Computational Thermodynamics: The Calphad Method

Phase diagrams are used in materials research and engineering to understand the interrela-
tionship of composition, microstructure, and process conditions. Computational methods
such as Calphad (calculation of phase diagrams), are employed to model thermodynamic
properties for each phase and simulate multicomponent multi-phase behavior in complex
systems. Written by recognized experts in the field, this is the first introductory guide
to the Calphad method, providing a theoretical and practical approach. Building on core
thermodynamic principles, this book applies crystallography, first principles methods and
experimental data to computational phase properties modeling using the Calphad method.
With a chapter dedicated to creating thermodynamic databases, the reader will be confi-
dent in assessing, optimizing, and validating complex thermodynamic systems alongside
database construction and management. Several case studies put the methods into a prac-
tical context, making this suitable for use on advanced materials design and engineering
courses and an invaluable reference to those using thermodynamic data in their research
and simulations.
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Preface

The idea of this book came from Professor Petzow, during the PML Betriebsausflug in
September 1991. In a very informal way Professor Petzow invited S.G.F. (who was
ready to return to Brazil after two years working with H.L. Lukas) to help H.L.L. to
collect all his ideas about, and experiences with, thermodynamic optimization and put
them into a book. Work on optimizations has been going on at Stuttgart for a long time,
and valuable experience has been accumulated. Dr Lukas’ feeling for optimizations is
very well defined and one can talk about a “Lukas school for optimizations.”

Later the project was enriched by the cooperation with Professor Sundman, at that time
Dr. Sundman, who brought his own large experience on computational thermodynamics
as well as the Stockholm group’s approach to the theme with all the formalisms so well
developed by Professor Mats Hillert.

The three authors were very motivated by the idea, since the lack of such a book had
always made it difficult to introduce students and researchers to this field. The knowledge
necessary in order to obtain a better thermodynamic description of a system is very broad,
requiring a judgment of the experimental data provided by the literature and also a wise
selection of the model best able to describe the experimental evidence. This judgment is
difficult, but the better “educated” the assessor, the greater his ability to judge well.

The three authors have never worked together in the same institute. When B. S. visited
Stuttgart during 1994, S. G.F. was already at Aachen. They have found time, however,
to work together and have been meeting for many years during coffee breaks, before and
after conferences, and during the Schloss Ringberg Workshops, in order to make progress
with the book.

Many conferences and five Ringberg workshops were necessary to achieve the objec-
tive. During this time we were able to incorporate the most recent theoretical achieve-
ments of first-principles calculations into our procedures. When the book collecting the
thermodynamic-optimization experiences of Stuttgart and Stockholm was finally sent to
the Press in July 2006, S. G.F. was working in Vienna, B.S. was working in Toulouse,
and H.L.L. had retired and was living in Stuttgart — and it was in time for the 80th
birthday of Professor Petzow! The modeling and software has developed significantly
during the writing of the book and it has been a challenge to keep it updated. Continuous
updates will be provided at the website of the book.



The authors discussing the book in the Hexenzimmer at Schloss Ringberg in 2005, during the
Thermodynamic Modeling and First-Principles Calculations Workshop organized by the Max
Planck Society.
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1.1

Introduction

The Calphad technique has reached maturity. It started from a vision of combining data
from thermodynamics, phase diagrams, and atomistic properties such as magnetism into a
unified and consistent model. It is now a powerful method in a wide field of applications
where modeled Gibbs energies and derivatives thereof are used to calculate properties
and simulate transformations of real multicomponent materials. Chemical potentials and
the thermodynamic factor (second derivatives of the Gibbs energy) are used in diffu-
sion simulations. The driving forces of the phases are used to simulate the evolution of
microstructures on the basis of the Landau theory. In solidification simulations the frac-
tions of solid phases and the segregation of components, as well as energies of metastable
states, which are experimentally observed by carrying out rapid solidification, are used.
Whenever the thermodynamic description of a system is required, the Calphad technique
can be applied.

The successful use of Calphad in these applications relies on the development of multi-
component databases, which describe many different kinds of thermodynamic functions
in a consistent way, all checked to be consistent with experimental data. The construction
of these databases is still a very demanding task, requiring expertise and experience.
There are many subjective factors involved in the decisions to be made when judging
and selecting which among redundant experimental data are the most trustworthy. Even
more subjective is the assessment of phases of which little or nothing is known, except
perhaps in a narrow composition and temperature range. Furthermore, the growing range
of applications of these databases increases the feedback and several corrections and
modifications are required. The development of new models and the rapid advance of
first-principles (from the Latin ab initio) calculations makes the assessment techniques
very dynamic and challenging.

Computational thermodynamics

Thermodynamics describes the equilibrium state of a system. This is a necessary
foundation for simulations of phase transitions and processes, since all systems try to
reach this state. In computational thermodynamics (CT) the equilibrium state is described
using thermodynamic functions that depend on temperature, pressure, and composition.
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These functions can be extrapolated also outside the equilibrium state and thus, when they
are included in a simulation model, provide information about values and gradients of
the thermodynamic properties in space and time outside the range of stability of a phase.

The thermodynamic models used by CT contain adjustable parameters, which can be
optimized in such a way that the models can reproduce many kinds of experimental
data as well as theoretical models and first-principles data. Thus CT is more flexible
and has much wider possibilities for realistic application calculations than merely using
first-principles data. The quality of the results of CT is based on the fit to experimental
data, which is also the criterion in judging the quality of results from first-principles
calculations.

More fundamental theories are focused on understanding particular mechanisms and
isolated properties, which they do very well, but they are not able to describe their cou-
pling in complex systems. CT can make use of theoretical results as well as traditional
experimental data and provides a unique framework of various types of information
that can be obtained using rather simple models. Thus CT is able to provide consistent
thermodynamic information with the accuracy required to describe multicomponent sys-
tems of technological interest. It is versatile enough to be extended to new applications
and incorporate related types of information such as magnetism (see section 5.4.2) and
viscosity (Seetharaman et al. 2005).

The important fact is that the thermodynamic information which can be extracted
from CT can describe the equilibrium state as well as extrapolations from it. There are
types of simulation software used today that depend on thermodynamic information such
as heat capacities, partition coefficients, and latent heats, but for which the data have
been collected from various sources and are inconsistent and cannot reproduce the real
equilibrium state. The results from simulations using such software may be reasonable
because the kinetic model has parameters that can be adjusted to compensate for the
errors in the thermodynamic data, but the range of applicability of the simulation is poor.
Of course, even with correct thermodynamics one will have to fit kinetic parameters in
simulation models, but these will have a larger range of validity because they depend less
on the thermodynamic properties of the system.

CT has shown its importance for calculating multicomponent phase diagrams and for
process and phase-transformation simulations as mentioned above and in detail described
in section 8.10. It is used by experimental researchers as a tool to test the compatibility
between their results and for data found in the literature, as well as planning new
experimental work. CT is also interesting to theoreticians, not only to use as a “reality”
against which they can check their predictions from fundamental models but, also and
more importantly, as a technique to improve the usefulness of their results by combining
them with experimental data, i.e. the Calphad method.

Knowledge of phase equilibria is fundamental to all aspects of materials science,
since the properties are determined by the microstructure, see for example Durand-
Charre (2004), and the microstructure consists of several phases arranged in space as
in Fig. 1.1. A practical way to obtain the phase equilibria in a multicomponent system
is by calculations using assessed thermodynamic databases. Hence the generation of
reliable and consistent computer-readable thermodynamic databases is very important.
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Figure 1.1 The microstructure of a low-carbon steel with many different stable and metastable
phases formed during cooling. The properties of the material depend on the amounts and
arrangements of these phases and their compositions. Computational thermodynamics together
with application software can be used to simulate the development of such microstructures and
predict the properties of materials. Courtesy of Mats Hillert.

New experiments are still very important, because the validated databases are based on
the combination of theoretical and experimental data.

The past and present, the Calphad technique

Phase diagrams had been calculated from Gibbs-energy models by van Laar (1908a,
1908b) and many others, but the first general description of Calphad was written by
Larry Kaufman in the book Computer Calculations of Phase Diagrams (Kaufman and
Bernstein 1970), in which he developed the important concept of “lattice stability” which
he had introduced earlier (Kaufman 1959). He explained clearly how parameters could be
derived both from experimental phase diagrams and from the rudimentary first-principles
techniques available at that time, and how they could be used to calculate phase diagrams.
The concept of lattice stability was essential for the development of multicomponent
thermodynamic databases, which was a very far-sighted goal because at that time it was
a challenge to calculate even a ternary phase diagram.

The method of extrapolating solubility lines into the metastable range to obtain a
thermodynamic property, such as the melting temperature of metastable fcc Cr, shows
one of the important advantages of combining phase diagrams and thermodynamics.
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Many such combinations have been used in exploring properties of other systems during
the development of the Calphad techniques. Important contributions on how to use
experimental and theoretical data in thermodynamic models were made by Kubaschewski
et al. (1967), Hillert and Staffanson (1970), Hasebe and Nishizawa (1972), Ansara et al.
(1973), and Lukas et al. (1977). For historic details, the recent paper by Kaufman (2002)
is recommended.

Originally the term “Calphad” meant calculating phase diagrams from thermodynamic
models with parameters adjusted to the available experimental data. The term “Calphad
technique” has come to mean the technique of selecting models for phases that can be
extrapolated both in composition and in temperature ranges, including also metastable
ranges. A comprehensive description of this Calphad technique can be found in Kattner
(1997). The “Calphad method” means the use of all available experimental and theoretical
data to assess the parameters of the Gibbs energy models selected for each phase.
That is the topic of this book. To describe the use of these models and parameters
stored in thermodynamic databases for various applications, the term “computational
thermodynamics” has been adopted.

It may be instructive to mention here that in the early days of Calphad there was a
heated argument among material scientists about how to model a dilute solution. The
thermodynamic properties of a dilute solution of B in a solvent A can be modeled with
a simple Henrian coefficient as described in section 5.5.9. With the Calphad technique
one needed two parameters, one representing the solvent phase consisting of pure B, i.e.
a “lattice stability,” and one interaction parameter between A and B. In the dilute range
the sum of these two parameters is the only important quantity and is in fact identical
to the Henrian coefficient. The fact that the Calphad technique needed more parameters,
and that the parameter representing pure B in the same phase as A often was an unstable
phase (like pure fcc Cr), was taken to be a severe drawback of the Calphad technique.

However, the drawback of dilute models is more severe because there are many
cases, for example at solidification, for which one must find a way to describe how the
thermodynamic properties vary when the solvent phase changes. Upon investigating this
problem in more detail, one finds that the Calphad technique is the simplest and most
consistent way to handle a multicomponent thermodynamic system with many “solvent”
phases. Similar modeling problems in which one has to evaluate “lattice stabilities” of
phases with more or less limited solubilities occur often in Calphad assessments. This is
discussed in chapter 6.

The future development of databases and software applications

As computers become faster, models and techniques of greater sophistication and accuracy
are being developed within CT. However, there is an important “inertia” present in the
thermodynamic databases, which are compiled from a large number of both independent
and inter-dependent assessments. In a reference book like Hultgren et al. (1973) one may
replace the data for one element without changing anything else, but in a database the
binary assessments depend on the unary data for pure elements and on the models selected
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for the phases. Ternary and higher-order assessments depend on the selected assessments
of the corresponding lower-order systems. This means that, in order to introduce a new
value for a pure element, a new assessment of a binary system, or a new model for a
phase present in a thermodynamic database one must revise all assessments depending on
this value, assessment, or model. The current commercial databases depend on a number
of decisions taken for pure elements and models made more than 20 years ago by the
Scientific Group Thermodata Europe (SGTE, http://www.sgte.org). It is a great credit to
the scientists involved in these decisions that there have been so few problems with using
these data to build multicomponent databases for so many years. Nonetheless, there is a
need to revise the set of unary and binary data as well as models continuously and maybe
every 10 years one should start creating improved versions of the databases from a new
revised set of data. The maintaining of databases is briefly discussed in chapter 8.

The number of publications on thermodynamically assessed systems is increasing
rapidly and most of them use SGTE unary data (Dinsdale 1991), but many important bina-
ries have been assessed several times using different models for some of the phases, which
are not always compatible. When selecting which assessed version of a system should
be incorporated into a database, the thermodynamic description should, at least ideally,
be the best that can be obtained at present, taking into account theoretical approaches
and technical possibilities. Of course, what should be judged the “best” assessment is not
easy to define, but some rules can be established, as will be discussed in this book.

A series of thermodynamic and modeling workshops organized by the Max Planck
Institute in Stuttgart and held in the conference center at Schloss Ringberg was initiated
in 1995. The aim of these workshops was to build the foundation for the next generation
of thermodynamic databases and software. They had a unique organization with from
five to seven groups, with from seven to nine participants in each. The participants in
each of the groups were expected to write a paper together on a specific topic during
the workshop, with some time to complete it allowed afterwards. The participants had
quite different opinions initially, but during the workshop many new ideas on how to
resolve the differences or find ways to resolve them appeared. The first workshop was
dedicated to pure elements and compounds and was published as a special issue of
Calphad (Aldinger et al. 1995). The second workshop was dedicated to modeling of
solutions and was published in Calphad (Aldinger et al. 1997). The third was dedicated
to applications and published in Calphad (Aldinger et al. 2000) and the Zeitschrift fiir
Metallkunde (Burton et al. 2001). The fourth was about applications and modeling of
special phases such as oxides and was also published in the Zeitschrift fiir Metallkunde
(Aldinger ef al. 2001). The fifth workshop was about Calphad and ab initio techniques
and was published in Calphad (Aldinger et al. 2007).

The structure of the book

This book is intended to be an introductory text as well as a reference book for optimization
of thermodynamic descriptions, but it is not intended to be read from beginning to end.
This first chapter gives some introduction to the scope of the book. The second chapter is
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for reference, since its content should be well known to any student of physics, chemistry,
or materials science, and the notation for thermodynamic quantities used in the book is
explained.

Chapter 3 gives a short introduction to ab initio calculations, in particular how results
from such calculations can be used for thermodynamic modeling and assessments. In
the fourth chapter various experimental techniques that provide the data necessary for
assessments are described. The fifth chapter gives a detailed description of most of the
models currently used to describe thermodynamic functions of phases. This is mainly
intended to be a reference for the sixth chapter, where the selection of models for phases
is discussed in terms of their properties.

Chapter 6 is the central part of the book, where the experience from many assessments
has been condensed into a few rules of practice. As usual, any good rule has many
exceptions; many of these exceptions will be described in chapter 9, which deals with
case studies. The reader may find that some topics are repeated several times; that is
usually because they are important.

Chapter 7 describes two of the most-used software systems for thermodynamic assess-
ments, BINGSS, developed by H.L. Lukas (Lukas et al. 1977, Lukas and Fries 1992)
and PARROT, developed by Dr. B. Jansson (Jansson 1983) as a part of the Thermo-Calc
software (Sundman et al. 1985, Andersson et al. 2002). The emphasis is on the main
features of these items of software; many of the peculiarities will be explained only in
the case studies in chapter 9. Chapter 8 deals with the creation of databases from separate
assessments and how to maintain a database.

Chapter 9 is again a crucial part of the book. The beginner should try to follow some of
the case studies in order to learn the technique from a known system. A careful reading of
the case studies is recommended, since they give many hints on how to use experimental
data of various types. The reader is also advised to look at the website for the book,
because more case studies will be available there. References to existing software and
databases can be found in a special issue of Calphad (2002, 26, pp. 141-312).
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2.1.1

Basis

Thermodynamics

A short overview on the rules of thermodynamics shall be given here, with special
emphasis on their consequences for computer calculations. This part will not replace a
textbook on thermodynamics, but shall help the reader to remember its rules and maybe
present them in a more practically useful way, which facilitates the understanding of
thermodynamic calculations.

Thermodynamics deals with energy and the transformation of energy in various ways.
In thermodynamics all rules are deduced from three principal laws, two of which are based
on axioms expressing everyday experiences. Even though these laws are very simple,
they have many important consequences.

Thermodynamics can strictly be applied only to systems that are at equilibrium,
i.e. in a state that does not change with time. As noted in the introduction, the
thermodynamic models can be extrapolated outside the equilibrium state and provide
essential information on thermodynamic quantities for simulations of time-dependent
transformations of systems.

The equation of state

The concept of thermodynamic state must be introduced before beginning with the
principal laws. This can be done by invoking the principle of the “equation of state.”
This is connected with the introduction of temperature as a measurable quantity. If
pressure—volume work is the only work considered, then one can state that in a homoge-
neous unary system the state is defined by two variables. Of the three variables temperature
T, pressure p, and volume V in a unary system, only two are independent, i.e. there exists
a condition

F(T,p,V)=0 (2.1)
which means that one of the three variables is determined by the other two:

V= f(T. p); T=f(V,p) oo  p=f(T,V) (22)
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A unary system consists of a single component, either an element from the periodic
table or a molecule that will not form any other molecules under the conditions considered.
For the definitions of the terms “homogeneous,” “system,” etc., any general textbook on
thermodynamics, for example Hillert e al. (1998), can be consulted.

For each additional kind of work considered, e.g. magnetic or electric, an additional
variable is necessary to define the state. Nevertheless, the above consideration is very
useful and, if the pressure dependence can be neglected, the state functions of pure
substances (unary phases) are functions of the temperature only.

For practical reasons a “state” may be defined for inhomogeneous systems, but that
can be taken as a simplified notation for the sum or integral of (eventually infinitesimally
small) homogeneous systems, for each of which the state has to be defined separately.

To define the state of non-unary (binary, ternary,. .. ) systems, one needs additional
variables, for example the amounts of the components. These may be replaced by mole-
or mass-fractions together with the total amount.

The first law of thermodynamics

This law is derived from the axiom of conservation of energy. A formulation well suited
for our purpose is the following: the sum of the heat and work transferred to an otherwise
closed system defines a function not depending on the way in which this transfer took
place. The function defined in this way is called the internal energy U. A “closed system”
means a system that does not exchange any heat, work, or matter with its surrounding.
Besides constant internal energy U, it has constant volume V and a constant amount of
matter (expressed as constant amounts N; of different components 7). All these quantities
depend only on the “state” of the system and they are called state variables or state
functions. The concept of state functions is very important in thermodynamics. A feature
of the internal energy U, which must be kept in mind for numerical calculations, is that
only differences between the values of this function for two well-defined states have a
physical meaning. No absolute value of U can be defined.

If the system is opened and either heat, g, or work, w, is transferred to it from the
surroundings, the above rule can be formulated in terms of a change of the internal
energy:

AU =qg+w (2.3)

Neither ¢ nor w is itself a state variable. Transferring either only heat or only work
may be different ways of bringing about the same change of state.

The second law of thermodynamics

This law is derived from the axiom that a complete conversion of heat to work is not
possible. It may be formulated as follows: a function of state, called entropy and denoted
S, can be defined, which can increase, but never decrease, in a closed system. The state
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in which the entropy of the closed system has its maximum is the equilibrium state.
No further change of state can happen in this system as long as it remains closed.

The difference between the entropies of two well-defined states of a system (that is
not closed) is defined by the integral

state 2 dQ
S2 B Sl - Ltate 1 (7)rcv (24)

dQ is the infinitesimal amount of heat transferred to the system on the way from
state 1 to state 2. The subscript “rev” indicates that the path from state 1 to state 2
must be reversible, which means that it is restricted to a sequence of equilibrium states.
On going in non-reversible ways from state 1 to state 2, some work is added instead of
heat. All real changes of state are irreversible, but a reversible change of state may be
simulated by a Gedankenexperiment, i.e., an experiment that one may think of doing, but
which it is impossible to do in reality.

The third law of thermodynamics

This law is derived from the axiom that it is impossible to reach the temperature of 0 K.
This temperature can be approached only asymptotically. A consequence of this axiom
is that the change in entropy of a reversible reaction approaches 0 when the reaction
temperature approaches 0K. By virtue of this law an absolute value can be defined for
the state function entropy, S, in contrast to the internal energy U. By convention § is set
to zero at 0 K.

Definition of some terms and symbols

A number of symbols will be used and the most important are summarized here. In most
cases they refer to just one phase. Whenever more than one phase is involved, a superscript
like « or B will be used to distinguish the phases involved. A superscript tot will be used
when it is emphasized that the symbol refers to the total value for the system, summed
over all phases. A phase is distinguished by its crystal structure (see section 2.2), and at
equilibrium its composition is homogeneous in space. The gas, liquid, and the amorphous
or glass phase are also phases, even though they have no crystal structure. Names of
phases are discussed in section 8.4.

The term “constituent” means any species that can be treated as an independent entity
to describe the constitution of a phase, for example molecules in a gas or a defect in a
crystalline phase; see section 5.3.

the absolute temperature.

the gas constant, 8.31451 Jmol ' K~!.
the pressure.

the volume.

the heat.

the number of moles of component i.

20 <~ =N
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N the total number of moles, N =", N,.

N, Avogadro’s number, 6.023 x 10%* atoms per mole.

the mole fraction of component i, x; = N;/N.

y; the fraction of constituent i. The sum of the constituent fractions is unity; however,
since y; depends on the solution model for the phase, there may be more constituents
than components, with the consequence that there is no general relation between
the constituent fractions and the mole fractions.

Y short for denoting the constitution, i.e., all constituent fractions in a phase.

G the total Gibbs energy of a system.

n the Gibbs energy per mole of components of a system.

G’  the Gibbs energy per mole of components of phase 6.

G the partial Gibbs energy of component i in phase 6.

°GY the Gibbs energy for the pure component i in phase 6.

wm; the chemical potential of component i.
a; the activity of component i, a; = exp[u;/(RT)].

There are often several specifications to these symbols placed as superscripts and
subscripts. The superscript is reserved for the phase, power, or sublattice indication.
As subscript one can have the normalization “m” or the specification of a component
or other things. The “pre”-superscript is used to specify that the symbol is for a pure
element, “°”, an excess quantity “E” or anything else that does not fit as a subscript.

oo

Equilibrium conditions and characteristic features

A first condition of equilibrium is that all parts of a system have the same tempera-
ture and the same pressure. Inhomogeneities at equilibrium may occur only on having
different “phases,” each of which, however, must be homogeneous in itself. This is a
direct consequence of the second law. A system with a temperature gradient may be
simplified by dividing it into hotter and colder parts. By transferring heat from a hotter
part to a colder part, according to Eq. (2.4) the entropy loss in the hotter part is less
than the entropy gain in the colder part, and thus the total entropy of the system is
increased. Similarly, equilibration of composition gradients increases entropy. This can
be shown by “van ’t Hoff’s equilibrium box,” as is explained in most textbooks on
thermodynamics.

Experimentally, pressure differences can be maintained for quasi-infinite times and
thus equilibrium with different pressures inside a system would seem possible. However,
such a pressure barrier means that the system is divided into parts forming independent
closed systems. Considering it as a single closed system implies that the pressure barrier
can be opened.

Systems in equilibrium have single scalar values for temperature and pressure, the
temperature and pressure of the system. A general system, in contrast, may have a
temperature and a pressure field, i.e., temperature and pressure may vary with coordinates
in space and the expression “temperature of the system” would be meaningless.
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In an open system the differential of the internal energy can be expressed as a sum of
products of an intensive variable and the differential of its “conjugate” extensive variable:

dU=TdS—pdV+)_ u,dN, (2.5)

i=1

The conjugate pairs of an intensive and an extensive variable are thus temperature
and entropy, T and S, negative pressure and volume, —p and V, as well as the chemical
potential and amount of component i, u; and N,.

Dividing Eq. (2.5) by T and exchanging the left-hand side with the first term on the
right-hand side gives another series of conjugate pairs of variables:

1 p T
dS=—dU+=dv-Y Zidn, 2.6
AU+ ;T ; (2.6)

with the conjugate pairs 1/7, U; p/T, V; and u,;/T, N;.

From section 2.1.3, the equilibrium condition can be formulated as follows: in a
closed system equilibrium is reached when the entropy reaches its maximal value. This
formulation is difficult to use practically because a “closed system” is very difficult to
realize experimentally, since it must have constant internal energy, constant volume, and
constant amounts of components.

However, under other conditions (in non-closed systems), one or more intensive
variables may be kept constant. If the temperature is kept constant, then the internal
energy U is no longer constant, since heat or work has to be exchanged with the sur-
roundings in order to keep the temperature constant. The role of being kept constant is
thus taken away from U and given to its “conjugate intensive variable,” which is 1/7.
Then the function which has a maximum at equilibrium is the state function derived by a
Laplace transformation from the entropy by subtracting the product of these conjugated
extensive and intensive variables, see for example Callen (1985) or Hillert ez al. (1998).
This leads to Massieu’s and Planck’s function (Table 2.1).

In practice another series of state functions, starting with the internal energy U, is
preferred. The other members of this series are formed by Laplace transformations using
the conjugate pairs of Eq. (2.5). For U the equilibrium condition is formulated as follows:
at constant values of entropy, volume, and amounts of the components, equilibrium is
characterized by a minimum of the internal energy. Because the sign of this series of
functions is defined to be opposite to that of S, W, or ®, these state functions have a
minimum at the equilibrium state. The state variables which have to be kept constant in
searching for the minimum are called characteristic state variables. They are given in the
last column of Table 2.1.

A state function in which all the characteristic variables are intensive variables must
always be zero. It is called the Gibbs—Duhem equation. At least one extensive variable
is necessary in order for us to be able to distinguish the “system” from its surroundings
or, in other words, to define the size of the system.
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Table 2.1 State functions having an extremum at equilibrium, if the characteristic state variables
are kept constant

Name Symbol or definition Characteristic state variables
Entropy S U \4 N;
Massieu’s function v=S-U/T 1/T Vv N,
Planck’s function S=S-U/T—-p-V/T 1/T p/T N,
Internal energy U S Vv N;
Enthalpy H=U+p-V S -p N,
Helmholtz free energy F=U-T-S T Vv N;
Gibbs energy G=U+p-V-T-§ T -p N,
Grand potential —p-V=U-T-S=>,;u;-N; T Vv M,
Gibbs—Duhem equation 0=U+p-V-T-S—3;u;-N, T p W

The most commonly used of these functions is the Gibbs energy, G, and, using it,
the equilibrium conditions are explicitly specified: in an isothermal isobaric system with
constant amounts of all components, the equilibrium is reached when the Gibbs energy
reaches its minimal value.

The function enthalpy, H, is often used in evaluating calorimetric measurements
because its change under isobaric conditions is, with few exceptions, equal to the heat
received, AQ, if this change is performed in a reversible way. Thus, for isobaric changes
of state Eq. (2.4) results in

state 2 <dH

S, -8 = / ) p = constant 2.7)
state 1 T

Functions of state

In the preceding section several functions were mentioned. The values of all these func-
tions are defined if the “state” of a system is defined. Therefore they are called state
functions or state variables. There are two classes of state variables, the “extensive’ ones,
the values of which are proportional to the size of the system, and the “intensive” ones,
which at equilibrium have the same value everywhere inside a system. Extensive state
variables include the volume, V, the number of moles, N, the number of moles of com-
ponent i, N,, the internal energy, U, the entropy, S, the Gibbs energy, G, and Planck’s
function, ®. Some intensive state variables are the pressure, p, the chemical potential of
component i, u;, the temperature, 7, and the variable w,/T.

Extensive variables depend on the size of a system; they must be distinguished from
the “integral molar” functions, which are examples of a more general class of functions,
namely the “quotients of extensive variables.” These are independent of the size of the
system, but, in contrast to the intensive variables, have different values in different phases
of the same equilibrium. Examples of this type of state variables or state functions are
the molar volume, V/N, the molar Gibbs energy, G/N, the mole fractions x; = N,/N, the
molar entropy, S/N, and the Gibbs energy per volume, G/V. The symbol G initially is
reserved for the extensive variable “Gibbs energy of the system” (measured in joules, J).
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In the literature, however, very often it is used instead of G/N or G, for the “integral
molar Gibbs energy,” which is a quotient of extensive variables and is measured in J mol .

Besides the “integral molar” quantities Z/N, there are “partial molar” quantities defined
as dZ/0N,, where Z represents any extensive function of state and the partial derivative
is taken at constant values of the other characteristic variables. The partial Gibbs energy
thus defined as the partial derivative of the total Gibbs energy with respect to the
amount of component i, (G /dN;) N, Tpo is identical to the chemical potential u;, which
is the intensive state variable conjugate to the amount of component i. u; can also be
obtained as the partial derivative of the total enthalpy H with respect to the amount
of component i, (0H/IN;)y s, but taken at constant entropy S, p, and N; (j # i).
This, however, is less interesting, because it is difficult to perform an experiment at
constant S, p, and Nj.

Gibbs’ phase rule

The number of independent state variables in a system determines the maximum number
of phases that can be stable simultaneously. Gibbs was the first to formulate this and it
is known as Gibbs’ phase rule:

f=c+2-p (28)

where f is the degree of freedom, c is the number of components, and p is the number
of stable phases. The number 2 represents the state variables 7' and p, since they appear
as state variables in all thermodynamic systems. If there are types of work other than pV
work, for example electric or magnetic work, there are additional state variables and the
degree of freedom increases by one for each additional type of work.

If either T or p is fixed, the 2 is reduced to 1. If both T and p are fixed, the 2 is
reduced to zero. Thus, in a system with one component at fixed 7 and p, just a single
stable phase can exist. If T or p is variable, one or two stable phases can exist, and if
there are two phases stable the degree of freedom is zero, i.e., this can occur only at a
single value of T or p. If both T and p are variable in a single-component system, then at
most three phases can be stable and this can happen only at a specific value of each of T
and p, and thus is called an invariant equilibrium. For example, the triple point of H,O,
at which ice, water, and vapor are stable simultaneously, is an invariant equilibrium. If
there are two phases stable in a unary system, the degree of freedom is 1 and it is called
a monovariant equilibrium. Here T can be expressed as a function of p or vice versa,
represented as a one-dimensional curve in a diagram. The T—p diagram for pure Fe is
shown in Fig. 2.6(a) later.

Most of the diagrams of binary or higher-order systems discussed below are drawn
for a fixed value of pressure and thus the maximum number of stable phases is three
in a binary system, four in a ternary system, etc. In an isothermal section of a ternary
system, i.e., at constant pressure and temperature, the maximum number of phases is
again three. In a phase diagram with potentials (intensive state variables) as axes the
degree of freedom defines the number of conditions that can be changed simultaneously
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(at least by a small amount). Thus, for invariant equilibria no condition can be changed,
for monovariant equilibria one condition can be changed. In a binary system at fixed
pressure the degree of freedom is two only in single-phase regions. In a binary diagram
with a potential plotted versus temperature single-phase regions appear as areas and two-
phase regions as lines, see Fig. 2.6(b) later. In a composition—-temperature diagram the
two-phase regions also appear as areas, but the degree of freedom is only one there, as
shown in Fig. 2.6(c). This reflects the fact that phase compositions but not phase amounts
are counted as variables in Gibbs’ phase rule.

The degree of freedom is an important quantity when determining the number of
conditions necessary to define the equilibrium, as will be discussed in section 2.3.2.

Statistical thermodynamics

In statistical thermodynamics the rules of phenomenological thermodynamics are
explained as resulting from the mechanics of all the atoms or molecules present in matter.
The main topic not included in mechanics itself is the statistical explanation of the entropy.
The entropy was explained by Boltzmann as being given by

S=k-In(W) (2.9)

where k = R/N, is Boltzmann’s constant and W is the number of different microscopic
states leading to the same macroscopic state. The assumptions necessary in order to
enumerate W were more clearly specified by quantum mechanics.

Statistical thermodynamics is the physical background of modeling expressions to
describe the Gibbs energy of a phase. The energy terms of the models are usually defined
by energies of formation of molecules or building units of crystal lattices. The entropy
terms are divided into vibrational terms, which are treated similarly to the energy terms,
and entropies of mixing.

Statistical treatment of vibrational entropy has been used successfully for two topics,
the calculation of the entropy of molecules in the gas phase, where the possible states
of rotation, vibration, and excitation can be related to spectroscopical experimental data,
and to low-temperature heat capacities of solids. The latter are normally not explicitly
used in the assessments described here, but appear in integrated form as entropies at the
“standard temperature” (298.15 K).

The entropy of mixing in many of the models in chapter 5 is derived from the following
question: what is the increase in entropy due to Boltzmann’s law, if two or more kinds of
different atoms are randomly mixed at N fixed places? Let N, and Ny be the numbers of
A and B species randomly mixed at N = N, + N places. Then the number W of possible
different configurations is

N!

W=—— 2.10
N1 Ny! (2.10)
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After using Stirling’s formula In(N!) & N - In(N) — N, neglecting —N for large N,
identifying N, /N and Ny/N with the mole fractions x, and xz and taking Avogadro’s
number for N, kN = R, it follows that

k-In(W)~k-[N-In(N) — Ny - In(Ny) — Ng - In(Ng)] = —R - [x4 - In(x,) + x5 - In(xg)]
(2.11)

This formula is used extensively in chapter 5. Since chapter 5 deals with applied
statistical thermodynamics, no further details are mentioned here. For a better understand-
ing of other features of statistical thermodynamics used in the modeling, textbooks on
statistical thermodynamics may be consulted.

Important thermodynamic relations

Only very simple thermodynamics is needed in order to describe the models. Since most
thermodynamic data are measured at known temperature, pressure, and composition,
it is convenient to choose the Gibbs energy, denoted G, as the basic modeling func-
tion. If the Gibbs energy is known, one may derive other quantities from this in the
following way:

Gibbs energy G=G(T,p.N;)
G,
t S=
entropy ( T )
G
enthalpy H=G+TS=G-T
aT N
(5)
volume V=|—
ap T.N;
hemical ial of [ 0G
chemical potential of component i o= aN (2.12)
heat capacity — ( 2)
T ), v,
thermal expansion
ap aT
isothermal compressibility ( )
bulk modulus B=1/k

All of the above quantities are valid for all thermodynamic systems. The partial
derivatives with respect to the characteristic variables of G are taken at constant values of
all the other characteristic variables. In solutions one may additionally define the partial
Gibbs energy for component i:

6= (i), U* @.13)
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In solution modeling we will use the Gibbs energy per mole of formula units,
Gn.=G/N (2.14)

To use the above relations for molar functions, the derivatives are taken from the molar
Gibbs energy G, at constant values of the mole fractions x; = N;/N and constant total
amount N = 1 mol.

In modeling the thermodynamic properties of a system, one must model each phase
in the system separately. The properties of the system at equilibrium are then functions
of the properties of the individual phases, if surface effects can be neglected.

Since many models yield expressions for the molar Gibbs energy as a function of mole
fractions, it is useful to transform Eq. (2.13) into a function of these quantities:

9G,, G, o
Gl:Gm‘i‘(ax’)TpXk—ZX] (K) (k?él, l?éj) (215)

J j T.p.x;

The molar Gibbs energy of a phase is often formulated not as a function of the mole
fractions x;, but rather, for example, as a function of the constituent fractions y;- In
this case derivatives with respect to temperature used in the above relations must be

calculated as
G, iG,, G, dy; .
() -(5), (5, (), e e
Px; pyj Vi /Tpe P

This equation means that the entropy and heat capacity have a contribution from the
speciation of the phase; see Fig. 9.8(b) later.
The second derivative of the Gibbs energy with respect to mole fractions is

2
0, - (L G ) (k#i, k#)) 2.17)
T.p.xj

dx; dx;

The second derivatives are used for the thermodynamic factor in diffusion calculations
and they are also used to calculate the stability function. A phase is stable against
fluctuations in its compositions if det|Q}| > 0. In some systems the stability function
changes sign and the locus of det|Q}| =0 is called the spinodal. If the phase composition
is inside this spinodal, i.e., det|Q)| < 0, it can lower its Gibbs energy spontaneously by
decomposing into two phases with the same structure but different compositions across a
miscibility gap. A “composition-set number” is commonly used as a suffix, e.g., bcc#2,
to a phase that can be stable with two different compositions at the same equilibrium. In
Figs. 2.1(a)—(c) the Gibbs energy, chemical potential, and stability function as functions
of the mole fraction of Cr are shown for the miscibility gap in the Cr—Fe system at 600 K,
using data from Andersson and Sundman (1987). The phase diagram for Cr—Fe is shown
in Fig. 5.4(a) later.
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The Gibbs-energy curve for the bee phase in the
Cr-Fe system at 600 K. The stable equilibrium
for compositions between the /A symbols (at the
common tangent) consists of two bee phases, one
with mainly Fe and the other with mainly Cr.
The spinodal points where the stability function
is zero are marked with O symbols on the verti-
cal dashed lines. For compositions between the
dashed lines, the bee phase may decompose spin-
odally, i.e. without nucleation, to the two equi-
librium compositions.

The chemical potential of Cr for the Gibbs-
energy curve in (a). The equilibrium composi-
tions are marked with A symbols and have the
same chemical potential for both compositions.
The spinodal compositions are indicated by the
dashed lines and coincide with the maxima and
minima of the chemical-potential curve.

The stability function det|}| for the Gibbs-
energy curve in (a). This curve passes through
zero at the spinodal compositions, which are in-
dicated by the dashed lincs. The sccond deriva-
tives of the Gibbs energy are also the “thermo-
dynamic factor” in the diffusion coefficient. The
strong cusp in the stability function originates
from the ferromagnetic transition.

Figure 2.1 The Gibbs-energy curve for the bee phase in Cr-Fe at 600 K and its first and second
derivatives with respect to composition.

Crystallography

Connection with thermodynamics

The modeling of thermodynamic functions of solid phases must be done in a manner
closely related to the crystal structure, because thermodynamic modeling is the application
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of statistical thermodynamics and the crystal structure is one of the bases which must be
considered in statistical treatment of solid phases. In particular, the sublattices defined in
the compound-energy formalism in section 5.5.1 have to be related to crystallographic
sublattices. The occupation of crystallographic positions by constituents defined in this
formalism can have some physical reality only if it has crystallographic reality.

The terminology of crystallography, insofar as it is useful for the modeling of thermo-
dynamic functions, shall be summarized here. It is used in section 6.2.5.5 and chapter 9.
For a deeper review of crystallography, the comprehensive treatment by Ferro and Saccone
(1996) is recommended.

Crystal symmetry

In crystalline solids the atoms are arranged in a “lattice,” which exhibits the same pattern
of atoms periodically in three dimensions. Three nonplanar vectors selected in accord
with the spatial periodicity define the “unit cell.” Since sums and differences of these
vectors are also periods of the lattice, the unit cell is not uniquely defined. The smallest
possible unit cell is called the “primitive unit cell.”

The primitive unit cell is not uniquely defined either, since a parallelepiped with the
vectors (d+ b), b, and ¢ has the same volume as a parallelepiped with the vectors 4,
b, and ¢. The commonly used unit cell is selected according to symmetry. The periodic
lattice usually contains a periodic set of “symmetry elements” (rotation axes, screw axes,
mirror planes, glide mirror planes, centers of symmetry).

The number of possible combinations of symmetry elements in a periodic lattice is
limited to 230 different “space groups.” The space groups are ordered according to the
“crystal systems,” which are defined in terms of the “highest” symmetry element. Also
the coordinate system of the unit cell is chosen according to the crystal system (Table 2.2).

The coordinates given in Table 2.2 do not always allow one to describe a prim-
itive unit cell. In the cubic coordinate system, for example, the vectors (Zz—i—l;)/Z,
(@47¢)/2, and (b+¢)/2 may define a primitive unit cell with one quarter of the vol-
ume of the unit cell with three perpendicular equal vectors a, l;, and ¢. This case is
called “face-centered cubic” (fcc). After these differences, the 14 “Bravais lattices”
are distinguished: primitive cubic, body-centered cubic (bcc), face-centered cubic (fcc),
primitive tetragonal, body-centered tetragonal (bct), primitive hexagonal, rhombohedral,
primitive orthorhombic, body-centered orthorhombic, one-face-centered orthorhombic,
all-faces-centered orthorhombic, primitive monoclinic, face-centered monoclinic, and
(primitive) triclinic.

The position of an atom inside the unit cell is given by three parameters, x, y, and
z, giving fractions of the unit cell parameters a, b, and c, respectively. The symmetry
elements of the space group for any position x,y, z produce images at several other
positions, called “equipoints.” For special positions, for example on a mirror plane or on a
rotation axis, several of the equipoints coincide. These special positions are distinguished
by the Wyckoff notation. The coordinates of all equivalent general and special positions
of all space groups are given in the International Tables for X-Ray Crystallography
(Henry and Lonsdale, 1965) or can be obtained from the website of the International
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Table 2.2 Highest symmetry elements and coordinate systems for the crystal systems

Crystal system Symmetry element Coordinate system
Cubic 4- and 3-fold axes Three perpendicular equal axes
Tetragonal One 4-fold axis Three perpendicular axes, two equal
Hexagonal One 3- or 6-fold axis Two equal axes at 120° and

a third one perpendicular to them
Orthorhombic Three perpendicular 2-fold axes Three unequal perpendicular axes
Monoclinic One 2-fold axis Two oblique unequal axes and

one perpendicular to them
Triclinic No symmetry axis Three unequal oblique axes

Table 2.3 Example of a space group description, (C 2/m 2/c 2,/a), Cmca, D}

Number Wyckoff Point

of sites notation symmetry Equivalent positions 0 0 0; § 3 0+

16 (8 1 Nz %G o xi-yi+n xi+yi-z
9.5 XLy Xitwis—z Xi-yi+z

8 @) m 0,72 0,3.% 5.0 5—2 593 +2

8 (e) 2 TROE I SRS I PRON £ R

8 () 2 x0,0; %0,0; x 11 %11

8 © ! P00 5300 g N

4 (b) 2/m 10,0, 1,11

4 (a) 2/m 0,0,0; 0,11

Union of Crystallography (http://www.iucr.org). Another useful website is that of the
Bilbao crystallographic server (http://www.cryst.echu.es).

In Table 2.3, as an example, all the symmetry elements and equipoints of space group
Cmca, DJ}, with their Wyckoff notations are given. x is used as an abbreviation of 1 — x.
There are three different notations for the same space group: the “full Herrmann-Mauguin
notation,” C 2/m 2/c 2,/a, shows most of the symmetry elements: C-centered Bravais
lattice, two-fold axes (2) in three directions, one of them a screw axis (2,), mirror planes
(m) and glide planes (¢, a) with glide vectors ¢/2 and a/2 perpendicular to the three axes,
respectively. The “abbreviated Herrmann—Mauguin notation,” Cmca, shows all symmetry
elements necessary to identify the space group. The Schonflies symbol, D1}, is based on
the macroscopic symmetry or “point symmetry,” D,,, with the counter “18.” In the “point
symmetry” mirror planes are not distinguished from glide planes, and screw axes and
rotation axes are treated as equivalent, i.e. only the macroscopic symmetry is taken into
account, neglecting details on the microscopic scale of atomic distances.

The symmetry elements in Henry and Lonsdale (1965) are given by figures and in
Table 2.4 all these symmetry elements are tabulated for the space group Cmca.



20

2.2.3
2.2.3.1

Basis

Table 2.4 Symmetry elements in space group Cmca, D%ﬁ

Bravais lattice Orthorhombic, C-centered

Symmetry-center 000 1io 104 o041 111 004 040 100
iy z= o 3o i M3 o M 3o o
Two-fold rotational axis, yz= 00 10 04 11

Mirror plane, x = 0 i

Glide plane, b/2, x = ! 3

Two-fold rotational axis, x z = H %% %% %%

Glide plane, ¢/2, y= : 2

Glide plane, (a+¢)/2, y= 0 i

Two-fold screw axis, x y = i 0 % 0 %% %% 0 % 0 % %i %%
Glide plane, a/2, z = : 2

Glide plane, 5/2, z= ﬁ %

Crystal structures
Definition

A “crystal structure” is described by giving the space group, the lattice parameters
(lengths of axes of the unit cell and angles between them), the number of constituents
per unit cell, the coordinates of one site of each set of equivalent positions, and the type
of constituent occupying each such site. An example is given in Table 2.5.

The crystal structures form families of (more or less closely) related structures. The
main argument of relationship is similarity of the geometry of the coordination of all the
atoms by other (like and unlike) atoms. For binary metallic phases a good classification
is given in Schubert (1964). A more recent review of crystal-structure classification is
the series of three papers by Daams et al. (1992) and Daams and Villars (1993, 1994).
It has to be mentioned, however, that the symmetry (space group, Bravais lattice, etc.)
does not show these relationships. It may be different for closely related structures and
identical for very different structures.

There exists computer software that can visualize the structures and make understand-
ing of the crystal structure and its use for thermodynamic modeling much easier.

Table 2.5 An example of a crystal-structure description

PdSn;-type (Schubert e al. 1959) Pearson symbol: 0C32
Space group: Cmca (equivalent to Bbam)
Lattice parameters: a=1717pm, b=646pm, c¢=649pm
8 Pd in 8(d) xyz=0.084 0 0
8 Sn in §(f) xyz=0 0.17 0.33

16 Sn in 16(g) xyz=0.168 033 0.17
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Nomenclature of crystal structures

Several nomenclature systems for the identification of crystal structures are in use.
The “prototype” is the name of the phase for which this crystal structure was
first determined. The “Strukturbericht” notation gave letters and counters to crystal
structures in the sequence in which they were classified. This classification stopped
around 1950 and thus this nomenclature does not cover all the crystal structures
determined later.

The “Pearson symbol” is a short description of the structure, denoting the Bravais
lattice by two letters (c, t, h, o, m, a for cubic, tetragonal, hexagonal, orthorhombic, mono-
clinic or triclinic; P, I, F, C, R for primitive, body-centered, face-centered, C-centered or
rhombohedral) and the number of atoms in the unit cell. Since these two specifications
may be the same for different crystal structures, this nomenclature is not unique, but
reflects explicitly the most important details of the crystal structure.

Mineral names very often are uniquely connected with a crystal structure and used
as a name for this structure type, like “spinel.”

In some thermodynamic databases the phase names used for several important crystal
structures do not belong to any of the above nomenclature systems. Some of these
names are ambiguous. The names fcc and bcc were initially designated for Bravais
lattices (face-centered cubic and body-centered cubic), but they are very commonly used
as names for the crystal structures denoted by prototype, Strukturbericht, and Pearson
symbols as Cu-type, Al, cF4, and W-type, A2, clI2, respectively. Even derivatives of
these structures are sometimes denoted by these two names, although they no longer have
the corresponding Bravais lattice. For example “ordered bec” is used for the CsCl-type
(B2, cP2) and FeAl;-type (cF16) structures having cubic primitive or face-centered cubic
Bravais lattices, respectively; “ordered fcc” is in use for the CuAu-type (L1, tP2) and
Cu;Au-type (L1,, cP4) structures having tetragonal or cubic primitive Bravais lattices
respectively.

The nomenclature systems are compared for a few important crystal structures in
Table 2.6. A more detailed table is given in Westbrook and Fleischer (1995).

Sublattice modeling

The crystal structure of a phase is very important for modeling its Gibbs energy by statis-
tical thermodynamics, for example in the compound energy formalism (see section 5.5.1).
All atoms in equivalent positions have the same coordination of neighboring atoms.
Therefore each set of equivalent positions (sites belonging to the same Wyckoff posi-
tion) may be treated as a “sublattice.” This means that, if one of these atoms can
be substituted by another one, the whole set of equivalent positions can be randomly
substituted. To simplify the thermodynamic modeling, several sets of equivalent posi-
tions with similar coordination may be combined and treated as a single sublattice. The
contrary, however, namely treating atoms of the same set of equivalent positions differ-
ently in the compound energy formalism, is usually not allowed. The chemical ordering,
to be described in section 2.2.3.4, does not contradict this rule, since in the ordered
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Table 2.6 Examples for the nomenclature of crystal structures

Prototype Struktur- Pearson Mineral Other

bericht symbol names names
Cu Al cF4 fcc (austenite)
w A2 cl2 bece (ferrite)
Mg A3 hP2 hep
NaCl Bl cF8 Halite,

Periclase (MgO)

CsCl B2 cpP2 Ordered bcc
Cu;Au L1, cP4 Ordered fcc
CuAu L1, tP2 Ordered fcc
Ni;Sn DO,y hP8 Ordered hcp
CaF, C1 cF12 Fluorite
MgCu, Cl15 cF24 (Cubic) Laves phase
MgZn, Cl4 hP12 (Hexagonal) Laves phase
MgNi, C36 hP24 Laves phase
Diamond A4 cF8 Diamond

structure the symmetry is diminished, splitting the set of equivalent positions into dif-
ferent ones having also different Wyckoff notations in the space group of the ordered
structure. Inside these Wyckoff positions the substitution has to be treated as identical
for all sites.

There is only one exception to this rule: if several atoms of the set belong to a molecule,
substituting one of them changes the molecule and may prohibit the substitution of the
remaining atoms. For example, if the four O atoms of a SO~ ion in a sulfate crystal
structure are on equivalent positions, substituting one of them by S gives a thiosulfate
ion SO;S?~. Random substitution of the O atoms by S atoms would yield ions with
two O atoms substituted, S(SZOZ)Z’, which do not exist. To describe a solid solution
of sulfate with thiosulfate in the compound energy method, the positions of the whole
anions SO~ and S(SO;)*~ should be treated as single positions forming one sublattice.
Similar situations may occur, but less obviously, in other crystal structures with homopolar
bondings, such as silicates, carbides, nitrides etc.

Chemical ordering

Another feature of crystallography needed in modeling of Gibbs energies is the description
of order—disorder transitions, also called superstructure formation. Ordering means in
general that a set of equivalent positions, occupied randomly by different atoms, splits
into two or several different sets of positions, each preferably occupied by one kind of
the different atoms. This is possible only with loss of some of the symmetry elements
of the space group that in the disordered state provide equivalence of the positions. This
loss of symmetry elements may happen in the following ways.

e  Without changing the unit cell, just losing sets of mirror planes or glide planes.
An example is hep with interstitials, space group P6;/mmc, with two metal atoms
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in Wyckoff position 2(c), and two octahedral voids in position 2(a), which can
be occupied by interstitial atoms. Neither position has any variable parameter. By
omitting a set of mirror planes and a set of glide planes the symmetry diminishes to
space group P3m1, whereby the position of the octahedral voids splits into the two
independent positions 1(a) and 1(b). The position of the metal atoms in this space
group has Wyckoff notation 2(d) with a variable parameter x. If x > 0.25, the voids
in position 1(a) become larger than those in 1(b) and may be preferably occupied
by the interstitial atoms, thus reducing the strain energy. The structure now is called
Cr,C-type.

e Diminishing the symmetry may be accompanied by going to a lower crystal system
(cubic — tetragonal, hexagonal — orthorhombic, hexagonal — monoclinic, . . . ).
Examples are the CuAu structure and martensite, in which the ordered phase is
tetragonal, but derived from a cubic disordered phase.

e  The primitive unit cell of the ordered phase is composed of several primitive unit
cells of the disordered phase. The simplest example is the CsCl-type ordering, in
which the cubic unit cell is identical with the primitive unit cell of the ordered phase,
but contains two primitive unit cells of the disordered W-type (bcc) phase, although
the commonly used cubic unit cell is the same in the ordered and disordered states.
A second step of ordering of this type gives the MnCu,Al-type (Heussler phase) or
Fe,;Al-type, in which the commonly used cubic unit cell (fcc) contains eight unit
cells of the CsCl-type, i.e., the primitive unit cell is twice as large as that in the
CsCl-type and four times that of the W-type.

A modeling of chemical order, using some simplifications proposed by Bragg and
Williams (1934), is described in section 5.8.4.

Equilibrium calculations

Minimizing the Gibbs energy

In section 2.1.6 various equilibrium conditions were described. Each of these conditions
can be used to calculate an equilibrium, but the most commonly used method is to find
the minimum of the Gibbs energy G at constant values of temperature 7', pressure p, and
amounts of components N,. Instead of amounts of the components one may use the mole
fractions, x; = N;/N, of all but the major component and the total amount N =)_ N;. The
usage of these conditions for a calculation needs an analytical expression of the molar
Gibbs energy for each phase o, G
internal variables such as the fraction of molecules or site occupancies, generally called

[e3
m?®

as a function of these and sometimes also other

site fractions or constituent fractions.

The Gibbs energy may have several minima compatible with these conditions. That
with the most negative value of G is the “global minimum” and corresponds to the “stable
equilibrium”; the other ones are “local minima” and correspond to “metastable equilib-
ria.” They differ in terms of the phases and their compositions present at equilibrium,
sometimes only by the compositions of the same set of phases.
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The above conditions do not yet specify which and how many phases are present.
Analytical expressions of Gibbs energies, however, exist only for phases and thus an
equilibrium calculation can be performed only for selected sets of phases. Thermo-Calc
uses the “driving force,” see section 2.3.6, to search automatically to determine whether
another set of phases has a minimum with a lower value of the Gibbs energy. In BINGSS
it is assumed that experimental equilibrium data are reliable only if the phases present
are known. Thus, the calculated value to be compared with an experimental one must be
an equilibrium involving just the phases present in the experiment. Of course, finally it
must be checked whether, by extrapolation of a phase description, this phase appears to
be stable in areas where experimentally it was found not to be stable.

In chapter 5 analytical expressions for integral molar Gibbs energies of phases, G,
are given. The total Gibbs energy is derived from these expressions by summing them
up, multiplied by the fractions or amounts of the phases, m*:

G=Y m"GS (2.18)

with the constraint m® > 0.

The analytical expressions of the molar Gibbs energies of the phases are expressed
as functions of 7, p, and either the mole fractions x{ of the components i in this
phase «, or the fractions y,El’a) of constituents k on sublattices / of phase « (constituent
fractions). The mole fractions x{* are definite functions of the site fractions y,E[’a), but
the inverse relation may contain additional variables. The amounts of phases, m®, are
definite functions of the mole fractions x* and the amounts of components N, = N - x?,
expressed by the (generalized) lever rule. The lever rule states that the amount of each
stable phase in the equilibrium multiplied by the mole fraction of the component in
that phase, summed over all stable phases, must be equal to the overall fraction of the
component:

X =y mxf (2.19)

The equilibrium condition may now be written
min(G) = min (Z m*G& (T, p, x* or yil’a))) (2.20)

The variables m® and x{* or y,((l’a) are usually the unknowns, the values of which have
to be calculated from the conditions of the energetic minimum.

Equilibrium conditions as a set of equations

The minimum of Eq. (2.20) is found either by hill-climbing methods or by setting the
derivatives with respect to the unknowns to zero, but keeping in mind the constraints
interrelating these variables. This set of nonlinear equations is solved for the unknowns
by an appropriate iteration algorithm.
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For the latter method Gibbs gave a formulation in which the constraints relating m®,
x, and N; were used to eliminate the variables m* and N;:

G?(T,p,x?):Gf(T,p,xf-a) (i=1,...,c,a=1,...,p—1,B=a+1,....,p) (2.21)

In equilibrium the partial Gibbs energies, defined in Eq. (2.13), of all components i
in each pair of different phases « and 3 are equal. A variation of this formulation of the
equilibrium conditions is that the partial Gibbs energies G{ of all phases are identical
to the equilibrium chemical potentials w,;, which are defined as the intensive variables
conjugated to the extensive variables N,. By their definition as derivatives of the total
Gibbs energy with respect to the N,, they are defined as partial Gibbs energies of the
whole system:

GH(T, p,x{") = p; (i=1,....,¢c, a=1,...,p) (2.22)

Besides the x{* in Eq. (2.22), also the u; now belong to the unknowns to be calculated
from the minimization of the total Gibbs energy.

The formulations Eq. (2.21) and, especially, Eq. (2.22) are very useful, if the G* are
given as functions of the x{, because then all relevant constraints are already included
in the equations. For a stoichiometric phase the equations concerning this phase must be
modified, which will be discussed later.

If the Gy, are given as functions of site fractions y,ﬁl’a) instead of mole fractions x{,
however, Egs. (2.22) are difficult to use, because then the constraints interrelating the
x¥ and the y,El’a) have to be considered. Eriksson (1971) and Hillert (1981) used the
Lagrange-multiplier method to derive a formulation whereby all the variables in Eq. (2.20)
are treated as independent. There are three types of constraints: (1) the total amount of
each component, N,, has to be kept constant; (2) the site fractions in each sublattice sum
up to unity; and (3) the charges of ionic species sum up to zero in each phase:

>my ad"y b,(:,.’l) SN =0 (all components) (2.23)
a 1 k
> wWP—1 =0 (all sublattices) (2.24)
k
> a®y @Dyl =g (all phases with charged species) (2.25)
] [

Each constraint is multiplied by a “Lagrange multiplier,” and added to the total Gibbs
energy in Eq. (2.20) to get a sum L. If all the constraints are satisfied, L is equal to G
and a minimum of L is equivalent to a minimum of the total Gibbs energy G. The b,(:',.’l)
are the stoichiometric numbers of component i in species k on sublattice / of phase «,
the a® are the fractions of sites of sublattice [ referred to all sites of the phase, and
the v,ia’l) are the charges of ionized species k on sublattice / of phase a. The Lagrange
multipliers are treated as additional unknowns. The derivatives of L with respect to the
Lagrange multipliers yield the constraints, but the derivatives of L with respect to the m“
and y,El’a) are now all independent. The Lagrange multipliers of constraints in Eq. (2.23)
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were shown to be identical to the chemical potentials u,; (Hillert 1981). The Lagrange
multipliers of Eq. (2.24) and Eq. (2.25) are called A*" and A%, respectively. Some of
the resulting equations may be simplified by replacing the unknowns A*" and A% by
@D = M) /m® and 7w = A% /m®, respectively. It was shown that these quotients remain
finite, even when m® approaches zero (Lukas et al. 1982).

Setting the derivatives of L with respect to the unknowns to zero yields the following
set of equations as equilibrium conditions additionally to Egs. (2.23), (2.24), and (2.25):

Gy

W +> a®. b,(ﬁ’l) + @D 47 q®. V,Ea’[) =0 (all species) (2.26)
Vi i=1

G =Y, Y a® Y by D =0 (all phases) (2.27)
i 1 k

The set of equations (2.23)—(2.27) is a set of nonlinear equations with the unknowns
m®, y\"_ and the Lagrange multipliers w;, *", and 72 as well as the variables T, p,
and N,. The latter values have to be kept constant during searching for the minimum,
meaning that no derivatives of the total Gibbs energy or of the function L with respect to
these variables are formed, but nevertheless they may be treated as unknowns according
to the question “at which (constant) values of 7, p, and N, does there exist a solution
for the equilibrium conditions?” The number of independent equations must equal the
number of unknowns. Thus, if any of 7', p, and N, are treated as unknowns, some other
conditions must be set, which are explained in section 2.3.5.

These equilibrium conditions are used in Thermo-Calc. In the following text they will
be referred to as “Hillert’s equilibrium conditions.”

If the molar Gibbs energies of the phases are expressed as functions of the mole
fractions x{ without considering constituent fractions, as for example in substitutional
solutions, Hillert’s equilibrium conditions reduce to

G«
P —+u+7T =0 (all components in each phase) (2.28)

Xi
Ge=>pix =0 (all phases) (2.29)
Z m*-x{—N; =0 (all components) (2.30)
doxf—1=0 (all phases) (2.31)

Multiplying the i Egs. (2.28) for phase « by x¢ and subtracting them from Eq. (2.29)
results (keeping in mind that }_, x* = 1) in

G«
G*— fo . ax;" -7 =0 (all phases) (2.32)
J 1

This relation identifies the variable 7 with G§ — >, x{* - (0G5 /dx;) (Hillert 1981).
On replacing 7 in Eq. (2.28) by this expression and using Eq. (2.15), one can obtain
Eq. (2.22).
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The set of equations (2.22), (2.30), and (2.31) is a set of nonlinear equations alter-
native to “Hillert’s equilibrium conditions” if the molar Gibbs energies are expressed
as functions of the mole fractions x{*. In the following, this set will be referred to as
“modified Gibbs equilibrium conditions.” They are used in BINGSS, BINFKT, TERGSS,
and TERFKT.

The further modification of this set in the case of a stoichiometric phase « is now
easy. Since the mole fractions of a stoichiometric phase are not unknown, Egs. (2.28) are
not used and the equation for phase « from the set (2.29) is used, because here it is not
used up to eliminate 7.

For semi-stoichiometric phases, equations intermediate between Eq. (2.22) and
Eq. (2.29) may be formulated. As an example the two equations replacing Egs. (2.28)
and (2.29) for a line compound with constant mole fraction of A in a ternary system are

«_,a (3% 9G,,
G . —

a a
Oxg ox¢

)= G0 sy = = 0 @)

IGE 9GS,
GLY _xa . ( m m

dxg  oxg ) et R) pem ARy = 0 (2.34)

In Thermo-Calc the equations are not modified with respect to the model of the phase,
and, for example, if a quasibinary section of a ternary system is considered, the “extra”
degree of freedom must be removed by assigning an arbitrary activity to the component
that is outside the quasibinary section. For example, in the ternary system Ca-Si-O,
Ca0-Si0, is a quasibinary system and, with the components CaO and SiO,, the activity
of O, can be set to an arbitrary value, since all phases in the quasibinary system have
their oxygen contents determined already by the Ca: Si ratio.

In “Hillert’s conditions” as well as in the “modified Gibbs equilibrium conditions”
the number of unknowns is larger than the number of equations by ¢+ 2, where c¢ is
the number of components, because, for each unknown, except the ¢+ 2 ones N,, T,
and p, there is just one equation. This means that the number of degrees of freedom
is ¢+ 2, which looks like a contradiction to Gibbs’ phase rule insofar as the number
of phases is not mentioned. The explanation is that the phase rule is derived from the
set of equations (2.21), from which the variables m® and N; have been eliminated and
a free change of these variables is not counted as a degree of freedom. For example, a
two-phase field in an isobaric binary system is treated in the phase rule as monovariant.
Nevertheless, after fixing the single variable 7', the N, still may be independently changed,
yielding different m®. The success of the phase rule shows that ignoring the variables
m® and N, in counting the number of degrees of freedom has its advantage. In the
above sets this can be done by ignoring the ¢ equations (2.23) or (2.30), respectively,
which are the only ones containing the p -+ ¢ variables m® and N,. On losing ¢+ p
variables and ¢ equations, the number of degrees of freedom changes to ¢ — p+2, in
agreement with the phase rule. This is also a reason why in Eq. (2.26), contrary to Hillert
(1981), A@D and A% are replaced by 7w-) and 7 in order to eliminate m® from these
equations.

To calculate a state of equilibrium, for each degree of freedom an independent condition
must be added to the set of equations, reducing the number of degrees of freedom to
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zero. These additional conditions and their purposes will be discussed in section 2.3.5.
In section 2.3.3 the solution of these sets of equations is described.

The Newton-Raphson method

Several methods for solving the sets of equations described in the previous section with
respect to the unknowns are known. In Thermo-Calc, as well as in BINGSS/BINFKT and
TERGSS/TERFKT, the Newton—Raphson iteration method is used, so this method alone
shall be described here.

It is a generalization of Newton’s method for finding the abscissa, where the value of
a function is zero (Fig. 2.2).

At a starting point x, the function f(x) and its derivative df/dx are calculated. The
intersection between the tangent to the function and the x-axis is taken as the next iteration
point and the procedure is repeated until f(x) is below a preselected limit €. The (i 4 1)th
iteration step, x,,, is calculated from the previous one, x;, by

d
(dl> Ax; = —fx;); X1 =X +Ax; (2.35)
X X=X,

i

Figure 2.2 gives the impression that Newton’s method converges very rapidly. Usually
that is the case, but there exist also cases in which the method diverges. This is explained
in Fig. 2.3 with the function f,(x) = tanh(x). Starting at x, yields a step far to the right
and the following step would be much further to the left. Starting at x,, however, would
lead to convergence.

The function f,(x) in Fig. 2.3 has different solutions for x for the condition f,(x) = 0.
Which of them is found depends on the starting value of x. Starting with x; will result

f(x)

Xo
X2 X1

Figure 2.2 Newton’s method.
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f,(x) fo(X)

X1 X X3 Xg X4 X5

Figure 2.3 Divergence, or different solutions, of Newton’s method.

in the solution on the left and starting with x, will give the solution on the right. x;
will result in a first step far to the left and will finally result in the solution on the left.
X¢ may give a first step to the vicinity of x5 and thus also will result in the solution
on the left. This illustrates that the influence of the starting value on the result may be
complicated.

The Newton—Raphson method is the extension of Newton’s method to more than one
variable. If, for example, the values of the variables x and y are to be determined, where
two functions, f,(x,y) and f,(x, y), are zero, Eq. (2.35) is replaced by the following two

equations:
ad ad
(i) A+ (j) Ay,
dx X=X;,y=Y; ay X=X, Y=Vi

(%) .Ax_+<9fz> Ay,
dx X=X}, Y=V [ dy X=Xj, V=Y 1

—fi(xi )

—f(x ) (2.36)

Xipg = X%+ Ax; Yip1 =¥ T Ay

The method is extended similarly to a set of n equations with n unknowns.

Global minimization of the Gibbs energy

All iterative techniques like the Newton—Raphson one need an initial constitution for each
phase in order to find the minimum of the Gibbs energy surface for the given conditions.
If a phase has a miscibility gap and its initial constitution is on the “wrong” side of the
miscibility gap, the phase may be metastable when it should be stable or may become
stable with the wrong composition; see Fig. 2.4.
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Figure 2.4 The Gibbs-energy curves for two phases with miscibility gaps. If the initial
constitution of the phases is on the “wrong” side of the miscibility gap when starting the search
for the equilibrium, one may find the metastable equilibrium represented by the upper tangent,
whereas the stable equilibrium is represented by the lower tangent.

Miscibility gaps can occur only in solution phases. For a system in which all phases
are compounds with fixed compositions, the equilibrium set of phases is given by the
tangent “hyperplane” defined by the Gibbs energies of a set of compounds constrained
by the given overall composition and with no compound with a Gibbs energy below this
hyperplane. There must be exactly as many compounds in this set as there are components
in the system and this equilibrium is “global.”

There are several minimization techniques that can be used to find the global equi-
librium (Connolly and Kerrick 1987, Chen et al. 1993) from a set of compounds; one
such has been implemented in Thermo-Calc, also for systems with solution phases. In
this case the Gibbs energy surface of all solution phases is approximated with a large
number of “compounds,” each of which has the same Gibbs energy as the solution phase
at the composition of the compound. The compositions of the compounds are selected
to cover the whole surface in a reasonably dense grid, often more than 10* compounds
are used for each phase. In a multicomponent system with many solution phases, this
may generate more than 10° such compounds. A search for the hyperplane representing
the equilibrium for the compounds is then carried out. When this has been found, the
compounds in this equilibrium set must be identified with regard to which solution phase
they belong to; many may be inside the same phase and Thermo-Calc may then automat-
ically create new composition sets. Each compound in the equilibrium set gives an initial
constitution of the solution phase, which can be used in a Newton—Raphson calculation
to find the equilibrium for the solution phases. This technique of approximating solution
phases with compounds can thus be considered as a method by which to obtain good
initial constitutions for the Newton—Raphson method and avoid the risk of starting from
a constitution of a phase that is on the “wrong” side of a miscibility gap.

The main limitation of the “global” method is that the conditions for the equilibrium
must be such that 7', p, and the overall composition are known. If other conditions are
used, for example the value of the activity of a component, that a phase should be stable,
or that a composition of a phase is known rather than the overall composition, then it is
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not possible to calculate the global equilibrium directly. However, after an equilibrium
calculation according to a Newton—Raphson technique, the overall composition can be
calculated and used in a global minimization to check whether the result is correct; if it is
not, one can use the global minimum as a starting point for a new equilibrium calculation.

Conditions for a single equilibrium

The equilibrium conditions described above as sets of equations contain fewer equations
than unknowns. The difference is the number of degrees of freedom f, so f extra
equations (conditions) must be added in order to select definitely a single equilibrium. This
corresponds, for example, to the selection of a single tie-line from a monovariant binary
two-phase equilibrium. In the optimization procedure the “calculated value” corresponding
to a measured one is selected in this way.

One means of selection is by fixing some of the unknowns to given values. This may
be counted as diminishing the number of unknowns, but formally it can also be counted as
adding an equation of the type “unknown state variable” = “constant value,” for example

T=1273;  p=101325 x=0.1;  p,=—40000 (2.37)

i

With the constraints Egs. (2.23)—(2.27) the simplest additional conditions are to fix
temperature 7, pressure p, and the amounts of all components N,. For each calculation
step, however, it must be selected which and how many phases are present, since Gibbs-
energy descriptions exist only for phases. Calculation steps with different sets of phases
may be compared. The phase set with the lowest Gibbs energy describes the stable
equilibrium.

If the equilibrium is calculated with a given set of phases, the equilibrium w-values
describe a simplex (straight line in binary, plane in ternary, hyperplanes in higher-order
systems), as shown in the next section. Whenever another phase has a positive “driving
force,” see section 2.3.6, there exists an equilibrium containing this phase, which is more
stable than that calculated for the selected set of phases. In the next calculation step this
phase must be added. If the calculation finds a negative amount for one of the selected
phases, this phase must be removed from the selected set. Phases with miscibility gaps
may have more than one driving force at different compositions and this test must be
performed separately for each of these compositions.

In Thermo-Calc this comparison of equilibria of different sets of phases is done
automatically. As initial values an arbitrary set of phases is selected, either by explicitly
setting starting values or by using “automatic starting values.” In BINGSS and BINFKT
the set of phases is selected by the user. Experimental data with undefined phases (for
example, a liquidus temperature with undefined primarily crystallizing solid phase) thus
cannot be used in BINGSS. For the calculated value to be compared with an experimental
one, the phases must thus be determined. A check is necessary only if, in the finally
assessed dataset, some phases appear to be stable where they were experimentally found
not to be stable.
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In the set of equations (2.22) the phase amounts and amounts of components are
eliminated. The same is true for the set (2.24)—(2.27) without (2.23). The degree of
freedom is that defined by Gibbs’ phase rule and thus depends on the number of stable
phases. The elimination of the amounts of components includes the elimination of an
overall composition from the equations.

Instead of just fixing single unknowns, other conditions may give relationships involv-
ing several unknowns. By the use of such conditions an overall composition may be
re-introduced into the set of equations (2.22).

A point of the boundary between the « field and the «+ 3 field in the isopleth through
a ternary system may be selected by adding one of the following two sets of two equations
to the six equations of the form of Eq. (2.22) for finding the eight values T', u5?, g, e,
xg, X8, xg , and xg describing the isobaric a + 3 equilibrium,

Xg = Xg; X¢ = x¢ (2.38)
or

x4 xg x¢
T=T% xg) x](;) x(cl) =0 (2.39)

Equations (2.38) fix the composition of « to xj, x2, which, of course, must be on
the isopleth, whereas Eqgs. (2.39) fix the temperature and give the condition that the
composition of « is on the straight line defined by the two points (1) and (2), which is
the abscissa of the isopleth. Thus the abscissa is given by Egs. (2.38) and the ordinate
calculated; with Eqgs. (2.39) the ordinate is given and the abscissa calculated. Therefore
Eqgs. (2.38) are valid for the calculation of a steep boundary, whereas Egs. (2.39) are well
suited to calculate flat boundaries. In BINGSS and BINFKT this can be selected by the
user. Thermo-Calc does that automatically.

The condition of three points being on a straight line can be used in BINGSS and
BINFKT to find the single point where phase « of a ternary three-phase equilibrium
passes through the isopleth defined by points (1) and (2),

XA Xp o XG
O x k=0 (2.40)

or to find an azeotropic maximum or minimum of a three-phase equilibrium o+ 8+ vy,
x4 xg xg&
xﬁ xg xg =0 (2.41)

Yoy
Xy Xg XG
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or to find in a ternary isothermal section the « + ( tie-line passing through the point

0 0.
Xp, X
X3 Xg XC
xﬁ xﬁ xg =0 (2.42)
0 .0 .0
Xa XB Xc

Thermo-Calc does not support these nonlinear conditions between mole fractions.
Nevertheless, the same equilibria can be calculated. The first one is found during
“mapping” of the isopleth and can be picked out from tabulated output of this mapping.
The second is obtained by “stepping” one mole fraction of one phase of the three-phase
equilibrium across this azeotropic extremum and selecting the equilibrium with maximal
or minimal temperature, respectively, in the tabulated output. The third one is just the
equilibrium at the fixed overall composition (x%, x5, x2).

Generally, boundaries in an isopleth can be found as “zero-phase-fraction” lines. The
boundary between the o+ 3+ y and 3+ v fields is found by searching for the o+ 3+ y
three-phase equilibrium using Eqs. (2.23)-(2.27) with the condition m* = 0. The N; in
Eq. (2.23) must be selected in such a way as to define a point on the abscissa of the
isopleth; then T, the ordinate of the isopleth, can be calculated or vice versa.

Maxima and minima of binary two-phase fields (azeotropic points) are found by setting
conditions between the mole fractions of the phases equal. The single condition

X —xf=0 (2.43)
selects an azeotropic extremum of the binary « + 3 two-phase field. The two conditions
x&—xb =0, xX—x=0 (2.44)

select azeotropic extrema of a ternary two-phase field.

If no azeotropic extrema exist, the corresponding sets of equations must, of course,
have no solution, except purely mathematical solutions outside the range 0 < xj <1
(i=a, B, y; j=A, B, C).

In quaternary systems conditions similar to those used for isopleths are valid as a means
to find boundaries in plane sections through an isothermal-composition tetrahedron. All
the other conditions in quaternary and higher systems are constructed in accord with the
same ideas as Eqgs. (2.37)—(2.44).

The driving force for a phase

At equilibrium the partial Gibbs energies for each component have the same value in all
stable phases, i.e. the Gibbs-energy curves of the stable phases touch the same tangent
(hyper)plane of chemical potentials. The Gibbs energy surfaces of all metastable phases
are above this plane. For each metastable phase one can determine the distance in terms
of Gibbs energy between the stable tangent plane and a tangent plane parallel to the
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Figure 2.5 The Gibbs-energy curves for some stable and metastable phases in the Cr—Fe system
at 500 K. In the middle of the system the stable phases are the two bcc phases on either side of
the miscibility gap which are connected with a common tangent. The endpoints of this tangent
represent the chemical potentials of the components, w,;. The triangular symbols on the tangent
represent the equilibrium compositions of the two bcc phases. The other two phases, fcc and o are
metastable since their Gibbs energies are always above the stable tangent.

metastable phase. This distance is regarded as the “driving force” and is illustrated in
Fig. 2.5. Tangents to the Gibbs-energy curves for fcc and o phases that are parallel to the
stability tangent have been drawn and the compositions of the fcc and o phases at the
tangents are marked by a square and a diamond, respectively; fcc or o phases with these
compositions are closest to being stable. The differences in chemical potentials between
these tangents and the stability tangent are called the driving forces of these two phases
and denoted AG° and AG™. Most often the driving force is divided by RT and thus
rendered dimensionless.

The driving force is an important quantity in the theory of nucleation of a phase and,
as mentioned in the previous subsection, it can be used during minimization of the Gibbs
energy to find whether there is another phase that is more stable than the calculated
equilibrium set of phases.

Phase diagrams
Definition and types

If two or three of the conditions mentioned in section 2.3.5 are systematically changed
within certain intervals, the resulting two- or three-dimensional manifold of equilibria
can be visualized as a phase diagram. Also four-dimensional and “higher-order” phase
diagrams are possible, but usually these are represented by two- (or three-)dimensional
sections. The largest dimension of a phase diagram is the number of free variables under
the equilibrium conditions, for example 7', p, and N, in Eq. (2.20), which is two more than
the number of components. This maximal number is diminished by one, since extensive
variables are represented as relative values by dividing them by one of them, usually N.
For example, the amounts of components N, are replaced by the overall compositions
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x; = N;/N, the total enthalpy of the system, H, by the molar enthalpy of the system
H/N, etc. The variable used as divisor (the total amount N in the above examples) is
of interest only as a measure of the size of the system. By keeping one of those relative
variables or an intensive variable constant, the dimension of the corresponding phase
diagram is again diminished by one. An isobaric binary system thus has two-dimensional
phase diagrams.

A phase diagram differs from a “normal” diagram (called a property diagram here), in
which one quantity is expressed as a function of another quantity. In a phase diagram the
coordinate axes all represent independent variables and the coordinate space shows the
“state of the system,” i.e. how many and which phases are in equilibrium at a selected
coordinate point. In a phase diagram also the points between the lines are meaningful; in
a two-dimensional phase diagram they describe the existence of a divariant equilibrium.
In a property diagram, in contrast, only points on the curve have meaning.

Lines in a phase diagram nevertheless can be interpreted as functional dependences.
Under the condition of monovariant equilibrium of a set of specified phases, one coordi-
nate of the phase diagram is an implicitly defined function of the other one. This will be
explained in more detail in the next subsection.

The coordinates as well as the state variables kept constant in a phase diagram must
satisfy some restrictions. Hillert er al. (1997a) elaborated the rules regarding possible
combinations of coordinates and fixed state variables. From each pair of conjugate vari-
ables of a set, Eq. (2.5) or (2.6), one variable must be selected and it can either be used
as an axis or kept constant.

Schmalzried and Pelton (1973) classified plane phase diagrams into three types in
terms of the type of coordinate axes: a first type with two intensive variables, a second
type with an intensive variable and a quotient of extensive variables, and a third type
with two quotients of extensive variables. Examples of these types are given in Fig. 2.6.

The two-dimensional phase diagrams in Fig. 2.6 belong to a unary system, a binary
system at a constant value of one intensive variable (p), or a ternary system with con-
stant values of two intensive variables (p, T). Similar plane phase diagrams exist for
n-component systems with n — 1 intensive variables kept constant.

Lines in phase diagrams represent monovariant equilibria, which in all the diagrams
of Fig. 2.6 are two-phase equilibria. The intensive variables are the same for all phases
in equilibrium, but the extensive variables differ. Therefore, in diagrams of the first type
(Figs. 2.6(a) and (b)), from Ferndndez Guillermet and Gustafson (1984) and Coughanowr
et al. (1991), respectively, the image of each monovariant equilibrium is a single line.
Coordinates, being quotients of extensive variables, represent overall state variables of
the whole system as well as individual state variables of the phases. In diagrams of the
second and third type (Figs. 2.6(c)—(f)), those of the latter type from Liang et al. (1998),
the variables of the individual phases are represented by a pair of lines belonging to the
two coexisting phases. Corresponding points on these pairs of lines are connected by
straight lines called tie-lines. In diagrams of the second type (Figs. 2.6(c) and (d)) the
intensive coordinate is constant along the tie-lines, so they are parallel to the axis of the
quotient of extensive variables, whereas in diagrams of the third type (Figs. 2.6(e) and
(f)) the directions of the tie-lines are an important part of the information which can be
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Figure 2.6 Types of phase diagrams: (a) is the T—p diagram of pure Fe, (b) is the T versus gy,
diagram of Cu-Mg, (c) is the normal binary phase diagram of Cu-Mg, (d) is the In(xy;,) versus

1000/T diagram of Cu-Mg, (e) is the H/N versus xy;, diagram of Cu-Mg, and (f) is the
isothermal section of Al-Mg—Zn at 608 K.
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given by the phase diagram. At the points on the tie-lines in the areas between these pairs
of lines the quotients of extensive variables represent overall variables of the system only.

The monovariant equilibria meet in invariant equilibria, where the variables of the phases
are represented by points, a single point in diagrams of the first type and separate points for
each of the (three) phases in the other diagrams. In diagrams of the second type the three
points are on a straight line at the same value of the intensive coordinate, whereas in diagrams
of the third type they form a triangle (a tie-triangle). The coordinates of points on the tie-lines
or within the tie-triangles represent only overall variables of the system.

The difference between a phase diagram and a functional dependence may be explained
by an example. The functional dependence of the molar volume on temperature can
be plotted in the coordinates abscissa = temperature and ordinate = molar volume for
a single phase with given composition and at a given constant pressure (for example
V.= (V,/T,)T for an ideal gas). A phase diagram of a unary system can be given in the
same coordinates. Here, however, instead of selecting a single phase and taking V,, as a
function of T, both T and V,, are taken as independent variables. Thus the pressure as
the intensive variable conjugate to volume cannot be freely selected, but depends on the
two coordinates temperature and molar volume. The diagram is a typical phase diagram
of the second type, showing how many and which phases are in equilibrium at selected
coordinate values.

The coordinates pressure and molar volume cannot be used simultaneously as coordi-
nates of a phase diagram, since they are conjugate and thus can replace each other, but
they cannot be chosen independently. A functional dependence, however, can be shown
for these coordinates, namely the dependence of molar volume on pressure at constant
temperature.

Two-dimensional phase diagrams not covered by the three types of Schmalzried and
Pelton are sections through higher-dimensional phase diagrams, cut by a condition relating
extensive variables. The most common examples of this type are “vertical sections” of
ternary systems (isopleths). In these diagrams the tie-lines usually are not in the plane
of section, which means that the extensive values of the phases are not all inside the
coordinate space. Owing to that, this type of diagram is often considered not to be a
phase diagram, but merely a section through a higher-dimensional phase diagram. This
distinction may be of minor importance, since any phase diagram shows only part of the
state variables, which are defined by the equilibrium conditions. For example, Fig. 2.6(b)
does not show the composition of the phases and Fig. 2.6(c) does not show u-values.
Also in isoplethal diagrams the quotients of extensive variables represent overall state
variables of the system, which can be interpreted as individual state variables of a single
phase only in single-phase areas including their boundaries simultaneously.

The lines in this type of diagram do not necessarily belong to monovariant equilibria,
but have another common feature: they show “zero-phase-fraction” equilibria. All the
lines show boundaries between an n- and an (n — 1)-phase field. They can be calculated
from the equilibrium conditions for the n-phase equilibrium with the additional condition
that the amount of one phase is zero, although still present in equilibrium. This one phase
is the phase missing from the adjacent (n — 1)-phase field. Points where lines meet in
this diagram can be calculated by setting the amounts of two phases to zero.
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Mapping a phase diagram

Several strategies for the calculation of phase diagrams are in use. One of them, which is
called “mapping” in Thermo-Calc, shall be outlined here. Two or three variables of the
conditions are selected as axis variables. For each axis a lower and upper limit as well as a
maximal step are given. All additional conditions are kept constant throughout the whole
diagram. If any of these additional conditions set constraints on mole or mass fractions (or,
generally, on quotients of extensive variables), the diagram will be an “isoplethal” section
of a full phase diagram. The selected axis variables in the plot are not necessarily those
of the calculation of the phase diagram, because, besides the axis variables themselves,
all other variables not fixed by the additional conditions are calculated and stored in the
raw output. The conditions kept constant, however, restrict the output and thus also the
diagrams to be drawn.

If the fixed conditions constrain only intensive variables, the mapping procedure
searches for all equilibria that are monovariant or invariant under these conditions, since
only monovariant equilibria appear as lines in complete phase diagrams. In isoplethal
diagrams it searches for all zero-phase-fraction equilibria.

The mapping procedure starts with a single “initial equilibrium,” whereby arbitrary
values for the axis variables are fixed inside the selected ranges of the axes. Starting
values regarding a selected set of phases and estimated values of the unknowns to be
calculated may be given by the user. Otherwise, Thermo-Calc creates automatic starting
values. Now the Newton—Raphson calculation is started and, if necessary, the set of
phases is changed using the driving forces of all phases considered (those having the
status “entered”) until the most stable set of phases and the equilibrium values of all
variables are found.

Now one of the axis variables is changed in a stepwise manner and the corresponding
equilibria are calculated until, in the case of non-isoplethal phase diagrams, the resulting
set of stable phases corresponds to a monovariant equilibrium. In isoplethal sections the
first change of the set of stable phases defines a point of a zero-phase-fraction line.

In non-isoplethal phase diagrams this monovariant equilibrium is traced, keeping all
except one of the axis variables constant and incrementing the condition of the only
variable axis in steps until an invariant equilibrium is found or one of the selected limits
of the axis is exceeded. The magnitude of the steps of incrementation is controlled by the
curvature of the line. At the invariant equilibrium there are initially ¢+ 1 monovariant
equilibria, where c is the number of components. One of them is now traced similarly; the
other ones are stored for tracing later. This procedure is continued until all monovariant
equilibria have ended at axis limits or at “known invariant equilibria” (meaning those
stored already).

In isoplethal diagrams the zero-phase-fraction line is traced by setting the appropriate
conditions: the set of stable phases is constituted by all phases appearing in both areas
adjacent to the line plus the phase appearing only in one area; however, this phase is
assigned the fixed amount of zero. This tracing is continued until an axis limit is reached
or the set of stable phases changes again, i.e., a phase appears on acquiring a positive
driving force or a phase disappears on receiving a negative amount. At such a point
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always four lines meet, separating the fields of stability of @, ®+ a, @+« + 3 and
® + B, where © stands for a set of phases numbering between one and c¢+2 in a
c-component system. Now the other lines starting at this point are traced similarly to the
monovariant equilibria in the non-isoplethal mapping procedure.

The mapping procedure sometimes ends with the message “sorry, can not continue.”
This indicates that the Newton—Raphson iteration does not converge. As pointed out in
section 2.3.3, this may happen due to bad starting values. Since here the starting values
of all unknowns are their equilibrium values in the previous step, this seldom occurs, but
there is no way to avoid it absolutely.

If in a phase diagram a set of lines is completely separated from another set, the
mapping procedure must be continued with an additional starting equilibrium leading to
the other set. This is likely to happen if a large homogeneity range of a single solid
solution extends throughout the whole phase diagram. An additional starting equilibrium
may also help to solve a problem with non-converging Newton—Raphson iteration.

In the Thermo-Calc software, equilibrium values of all variables are stored for each
calculated equilibrium during the mapping. This enables one to plot any state variable or
function of state variables after the mapping. For example, Figs. 2.6(b)—(e) could all be
plotted from a single mapping.

BINFKT and TERFKT have no automatic mapping procedure. Monovariant equilibria
of a selected set of phases are calculated in stepwise fashion along a range of an axis
variable, most often the temperature, but also the chemical potential or mole fraction of
one of the participating phases may be used as the axis variable. Starting from a boundary
system with one phase fewer is supported. In this boundary system (a pure component
in BINFKT, a binary system in TERFKT) the corresponding equilibrium is invariant, but
the derivatives of the monovariant lines into the system itself can be calculated (Lukas
et al. 1982). Invariant equilibria involving a selected set of phases can be calculated
easily. Possibly the set of starting values of the unknowns will lead to divergence of the
iteration and a different set must be tested.

These two programs were constructed primarily to calculate diagrams for comparison
of calculated with experimental data after a run of an optimization procedure. Thus,
for the purpose of calculating phase diagrams from a database, they may be somewhat
less user-friendly than Thermo-Calc. Nevertheless, they enable also calculation of com-
plete phase diagrams and isopleths through ternary systems. The distinction between
stable and metastable equilibria is not made in each calculation step, but there are some
final checks allowing one to determine whether the accepted equilibria are the most
stable ones.

A good strategy for BINFKT is to calculate first the two-phase fields starting from the
transformation points of the pure elements. Azeotropic maxima or minima are automat-
ically found. Then some invariant three-phase equilibria are tentatively calculated. The
monovariant two-phase equilibria starting from them can now be calculated. Where two of
the monovariant equilibria intersect, an invariant equilibrium must be present, for which
now the unknowns are approximately known and can be used as a good set of starting
values. Both in Thermo-Calc and also in BINFKT and TERFKT various plots can be
generated from the same calculation. In a binary u—T plot a crossing of lines indicates
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that a calculated equilibrium becomes metastable there. Thus u—7 plots enable one to
check whether the most stable equilibrium has been selected everywhere.

Implicitly defined functions and their derivatives

Although the lines in a phase diagram are not intended to show a functional dependence,
they can be interpreted as such a dependence for the condition of a monovariant equi-
librium. For example, in Fig. 2.6(b) for equilibrium between liquid and the C15-MgCu,
phase, the corresponding line shows a functional dependence of the temperature 7" on the
chemical potential of Mg, u;,- Mathematically, this functional dependence is given as an
implicitly defined function by the equilibrium conditions, expressed for the two phases
selected.

Since this two-phase equilibrium is monovariant, one additional equation of the type
(2.37), namely py;, = &, completely defines equilibrium. Now all state variables can be
calculated, solving the equilibrium conditions by the Newton—Raphson method. Since the
result depends on the value of &, all the state variables, including 7', are implicitly defined
functions of ¢ and the calculation yields the function values for the chosen value of £.
Also the inverse function, iy, (7), can be calculated by selecting a temperature instead
of a Mg chemical potential as the independent variable £. In the present case this inverse
function has no value above 1074 K and two values below this temperature. Thus, to
plot the two-phase equilibrium liquid + C15-MgCu, on the phase diagram, it is better to
calculate 7" as a function of uy,, rather than uy;, as a function of 7'. For other two-phase
equilibria the contrary may be true.

Also in a diagram of the second type, a possible point of view is to interpret the lines
as representations of implicitly defined functions. In Fig. 2.6(c) the boundary of the two-
phase field C15-MgCu, + Mg,Cu against C15-MgCu, shows T as an implicitly defined

. MgC ) T CC15-MeC o
function of xy;  as well as the inverse function xy, (7). Here it is preferable

to select T and calculate the value for the inverse function, xf,[lgS’Mgcuz, but, for example,
to calculate the liquidus line of the liquid 4+ C15-MgCu, two-phase equilibrium, it is
better to select x}\i,?;d as the independent variable.

The concept of implicitly defined functions also defines the derivatives of these func-
tions. If the Newton—Raphson method is used for the calculation of function values, it
is easy to get also values of the derivatives. To show that, one can assume a set of two
conditions f,(x, y,#) =0 and f,(x, y, f) = O relating the three variables x, y, and ¢. These
conditions implicitly define the two functions x(z) and y(z). For example, x and y may
represent the mole fractions of the two phases of a selected two-phase equilibrium and
t the temperature. The conditions f; =0 and f, = 0 must be satisfied throughout the
whole range of variables of the implicitly defined functions. Therefore also their total

derivatives with respect to r must be zero:
dh _ 9N (Oh\dx  (afi\dy_
dr ot dx ) dt dy ) dt

dfs _0h | (dh\dx  (h)\dy _
dr ot ax Jar " \ay ) dr

J’_

(2.45)
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The derivatives dx/dt and dy/dr have to be taken over the equilibrium states and
thus are the sought derivatives of the implicitly defined functions. The values of these
derivatives corresponding to the selected value of the independent variable ¢ can be found
by solving Eq. (2.46) as a set of two linear equations for the two unknowns dx/d¢ and
dy/dz.

Comparing Eq. (2.46) with (2.36) shows that the matrix on the left-hand side is the
same as that used to find the corrections to the variables in the last iteration step of the
Newton—Raphson method and thus has already been calculated. The right-hand side of
Eq. (2.46) consists of the partial derivatives of the conditions f; and f, with respect to
the variable ¢, the independent variable of the implicitly defined functions.

In this way any of the unknowns of the equilibrium conditions can be treated as an
implicitly defined function of another one and values of the function itself as well as of
its derivatives can be calculated by the Newton—Raphson method.

As an example of derivatives, we may derive the famous Gibbs—Konovalov rule

(Goodman et al. 1981) from Eq. (2.46). We formulate the equilibrium conditions for two
phases in a binary isobaric system by modifying Eq. (2.21):

(2.46)

F=Gi-GP =0

F,=G{-GS =0 (2.47)

Using Eq. (2.15) and expressing the derivatives of the partial Gibbs energies with
respect to T as partial entropies, Eq. (2.46) becomes

2 ~a a 2B B
e PG dx o PGP di:sa—s?
oxe? ) 4T axpP2 ) ar !

X 2 g 5 (2.48)
"G\ dx“ d°Gh '\ dx
1—x° 2 —(1—xF n) =Sy —S)
( x)<axa2)dr ( x)<8xﬁz)dT 272
On solving this set of two equations for the first unknown dx“/dT, we get
et (SY—SP)(1—xF) + (S5 — 57)aP (2.49)

a7 (x@ — xB)P G /dx2

The numerator is the change in entropy associated with reversible dissolution of 8 in
a. It can be replaced by the corresponding change in enthalpy divided by 7. Then we
get the Gibbs—Konovalov rule in the form referenced by Goodman et al. (1981) as the
derivative d7/dx® of the inverse function

( dr ) B (x* —xP)T G2 /x?
dx« coex (H?_HIB)(l _XB)‘F(H;—HZB)XB

(2.50)
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where the denominator is the molar enthalpy of reversible dissolution of an infinitesimal
amount of S in «, denoted —AHllfP by Goodman et al. (1981) (numerator and denominator
here have opposite signs to those in the formulation of Goodman ez al.).

Optimization methods

The principle of the least-squares method

In this section the least-squares method shall be briefly described as it was first introduced
by Gauss, as is done in many textbooks. Mainly the connection with our problem shall
be outlined.

The general problem is as follows: a set of n measurable values W, depends on a set
of m unknown coefficients C; via functions F; with values of independent variables x;;:

W,-=F,-(Cj,xki) i=1,...,n, j=1,....m (2.51)

The index k distinguishes the various independent variables (temperature, concentra-
tions, ...) belonging to measurement number i.

If n is greater than m, it is usually not possible to get a set of coefficients C; for which
the W, calculated using Eq. (2.51) are equal to the corresponding measured values L;.
Here the criterion for the “best” set C; is that the sum of squares of the “errors” must be
minimal, where the “errors” v, are defined as the differences between calculated, F;, and

measured, L;, values times a weighting factor p;:
(Fi(cj’ X)) — L) pi=v; (2.52)

In many textbooks the square of the quantity p; of Eq. (2.52) rather than p; itself is called
the weighting factor. Equation (2.52) is called the error equation.
The condition for the best values C; is taken as

Z ui2 = Min (with respect to the C;) (2.53)

From this condition the m following equations relating the m unknown coefficients C,
can be derived:

Z "ac j=1....m (2.54)

i1

To solve these equations, Gauss expanded the v, into a Taylor series and truncated it after
the linear terms:

"y,
v;i(Cj, xp) & U?( ﬂ%)"‘z Frol
I

(2.55)
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where the AC; are corrections to the coefficients C,. If the F;(C;, x;;) and therefore also
the v; are not linear in the coefficients C;, this is an approximation, which might not be
acceptable if the values of the C;) are too far from the final values of the coefficients.

To calculate the corrections AC,, Eq. (2.55) is inserted into Eq. (2.54) and, after
rearranging, that yields

"L dv, v " v,

L. L )AC =— P i=1,..., 2.56
§ (; ac, aq) ! ;” ac, 7 " (2:56)
This is a set of m linear equations for the m unknowns AC;, called “Gaussian normal

equations,” which in matrix notation are written

" dv; Iy, B n o,
((Zl ac, ac,))m B (AC)), = ((—;vﬁ“ BCI))MI (2.57)

These equations are set up, using an initial set C,° of the coefficients, and solved for
the corrections AC,. After adding the corrections to the initial set, the calculation may be
repeated until the corrections are below a given limit.

As a measure of the fit between the resulting coefficients and the measured values,
the mean square error can be used. It is defined by

n 2

mean square error = y_ — (2.58)
= n—m

The accuracy of the calculated coefficients is proportional to the square root of the
mean squared error. The factor of proportionality of each coefficient is the square root
of the corresponding diagonal element of the reciprocal of the left m x m matrix of
Eq. (2.57).

The weighting factor

In the BINGSS software, described in section 7.2, special care is taken to deal with the
fact that, when different types of measurements are used, the errors v, cannot be compared
directly. Quantities of different dimensions cannot be added, therefore the squares of
errors in Eq. (2.53) should have the same dimension. The weighting factor p; in Eq. (2.52)
can be used to make the errors v, dimensionless, if p; is taken as the reciprocal of the
estimated accuracy AL; of the measured values (Lukas et al. 1977):

pi=(AL)™ (259

If also the independent variables, x,; (composition, temperature, . .. of the sample
investigated), have limited accuracies, Axy;, that may also be taken into account (Lukas
et al. 1977). In this case the weighting factor p, is defined as

1
2

pi= (AL? +Z((‘9Fi/axki) : Axki)2> (2.60)
k
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This choice may be interpreted as the v; being dimensionless relative errors defined
as fractions of the mean errors of the corresponding measurements. Therefore, the errors
of different kinds of measured values can easily be compared.

The AL; may be estimated from different points of view varying from one series of
measurements to another. During the optimization in BINGSS, this can be corrected:
for measurements marked by a common label the weight given by Eq. (2.59) can be
multiplied by a dimensionless constant factor. This includes the factor “0” to discard a
doubtful series of measurements in the following calculations.

In the PARROT software, see section 7.3, the term added to the sum of squares of
errors for each experimental value i is equal to

(experimental value); — (calculated value)l->2 2.61)

weight; -
( s (estimated uncertainty),

This is equivalent to a combination of Egs. (2.52) and (2.59) without considering
the uncertainties of the independent variables (Eq. (2.60)). The additional dimensionless
factor “weight,;” is left to the responsibility of the user to assign weights that reflect the
relative importance of the data. The default settings of all weights are equal to 1.

Marquardt’s algorithm

If all the equations of error are linear in the coefficients, Eq. (2.57) is correct and the
final solution should be found in one step. A second or third step may be useful merely
due to errors produced by rounding. However, if the equations of error are nonlinear in
the coefficients (either due to the analytical description of thermodynamics or due to the
error equation) the step after Eq. (2.57) may fail and the mean square of error increase.

To solve this problem D. W. Marquardt (1963) combined the Newton—Raphson method
with the steepest-descent method. The identity matrix multiplied by a factor called the
Marquardt parameter is added to the normalized matrix of Eq. (2.57). If the Marquardt
parameter is large, this term is dominant and the corrections correspond to a steepest-
descent step, in which the length of the vector is the reciprocal of the Marquardt parameter.
If the Marquardt parameter is small, the iteration step is nearly the pure Newton—Raphson
step. If the mean square error increases, the last correction is discarded and the Marquardt
parameter enlarged by a factor (for example 10) and new corrections are calculated using
the matrix of Eq. (2.57) of the previous step. If two consecutive steps were successful,
the Marquardt parameter is diminished by the same factor for the next calculation.

There are many other methods of improving the Gauss algorithm for nonlinear equa-
tions of error described in the literature. Most of them are mainly intended to diminish the
calculation time compared with that of Marquardt’s algorithm or to avoid the analytical
calculation of derivatives. Since in our special case the calculation time depends mostly
on the calculation of the sum of squares of error, rather than on solving the system of
linear equations (2.57), the calculation time cannot significantly be reduced from that of
Marquardt’s algorithm. Also the analytical calculation of derivatives is no problem in our
case. Therefore no other algorithm is used in BINGSS.
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Final remarks

In this chapter, diverse topics of science such as thermodynamics, crystallography,
numerical methods, and phase diagrams have been mentioned. As stated at the begin-
ning, the aim of CT is to make use of experimental and theoretical information from
all these topics to formulate a thermodynamic description using for each phase in a
multicomponent system a single Gibbs energy function that can describe the equilibrium
state of the system. Such a description must, of course, be very approximate and can
be improved with new data and better models, but it has already proved to be of great
value in understanding, predicting, and simulating chemical processes and properties of
materials.

The thermodynamic description using a single Gibbs energy for each phase means that
all thermodynamic properties such as enthalpy, heat capacity, and chemical potentials
can be consistently calculated from this. The equilibrium state for a system at given
temperature, pressure, and amounts of components, the most common external conditions,
can be calculated by finding the minimum of the Gibbs energy, including all possible
phases. From the calculated equilibrium all thermodynamic quantities can be obtained, as
can, for example, amounts of the stable phases and the partitioning of the components.

The phase diagram describes the equilibrium state of a system as a function of two or
more state variables. For multicomponent systems there are many different types of phase
diagrams that can be useful. Any such diagram can be calculated from the Gibbs energy
functions and they will all be consistent. The thermodynamic functions can be used for
much more than just calculating equilibrium phase diagrams and properties of the stable
states. There are no drastic changes in these functions when they are extrapolated outside
the stability ranges of a phase. A simple kind of extrapolation is to suspend a phase and
calculate a metastable phase diagram from the functions. For example, the metastable
Fe—C phase diagram with cementite can be calculated if graphite is suspended.

By extending this idea further, one can calculate any equilibrium for a phase or an
assemblage of phases, irrespective of whether these phases represent the stable state of
the system. Of course, the calculated metastable equilibrium is only approximate and the
further away from the stable state the less confidence can be attributed to the calculated
values of the state variables. However, often the modeled Gibbs energies are the only
thermodynamic information available for a metastable state. This use of the Gibbs energy
functions requires that the assessment of the stable states be done with great care. The
selection of models and model parameters should be made with the intention that the
Gibbs energy functions and their derivatives will behave reasonably outside as well as
inside the stability ranges of the phases.

The same rules apply to these metastable equilibria as to the stable one. The only
difference is that the total Gibbs energy (for a system at constant 7 and p) is higher than
that for the stable equilibrium. However, it is still a minimum for the phases included in
the calculation and the chemical potentials for all components are the same in all phases.






3 First principles and
thermodynamic properties

Viewing thermodynamics with an insight into statistical mechanics freed scientists from
the empiricism of the nineteenth century (Callen 1985), and extending this insight to
quantum-mechanical calculations of electronic structures, which has been enormously
enhanced in the last 20 years, has made possible the contemporary integrated view of
materials’ properties.

In chapter 2 the thermodynamic state functions and crystallography were said to be
related. If one considers the electronic structure, a straightforward link is made, since the
crystal structure at 7' = 0, for a given set of atoms at constant pressure p, is the one for
which the enthalpy H, H = U + PV, has a minimum.

It is appealing to unify knowledge, and one can start with unities, 1pRy/atom =
1.32kJmol ™", 1eV/atom = 96kJmol~" and the internal energy U at T = 0 is usually
called the total energy, E,,, by the electronic-structure community. Learning about these
quantum-mechanical calculations and their development should help assessors to envisage
how thermodynamic knowledge can be enhanced by using state-of-the-art first-principles
(ab initio) results.

Suppose that one could calculate quantities like the energy U (Table 2.1) per cell of
volume V = (V,,,) for a given crystal, just using a purely quantum-mechanical approach.
One could use equations like (2.12) for the U calculated from first principles and obtain
two other fundamental quantities:

energy U=U(V)
U
ressure =—| —
pressu P==ov 3.1)
P*U
bulk modulus k=-V|—
av?

These would be impressive and useful since the volume and bulk modulus could then
be predicted for any material. But are these calculations possible? These quantities can
nowadays truly be calculated for a crystal frozen at T = 0, specifying only Z; (atomic
numbers) and r; (atomic coordinates like the ones in Table 2.3), without any adjustable
parameters (Hafner et al. 2006).

This is made possible by using the density-functional theory (DFT) (for which the 1998
Nobel Prize was awarded) together with the local spin-density approximation (LSDA)
formulated by Kohn and co-workers in the mid 1960s (Kohn and Sham 1965). (For a

47



48

3.1

3.1.1

3.1.2

First principles and thermodynamic properties

tutorial approach, see the books by Martin (2004), Pettifor (1996), and Pisani (2000), and
also the report from the 5th Ringberg workshop (Turchi er al. 2007).)

But are these calculated values predictive? To test whether they are, one can calculate,
for example, the equilibrium volume, V°, where U is minimum or p =0 or k at zero
pressure for the crystal structure of interest. Since these quantities are experimentally
observable, one can extrapolate the measured values to 7 = 0 and compare the results
with the values predicted by the theory. In many cases these predictions obtained using
DFT are surprisingly good; surprisingly, because the theoretical approach used is, in
principle, very simple, as one can see in the next sections.

The density-functional theory (DFT) and its approximations

To treat a set of atoms with quantum mechanics requires one to solve the Schrodinger
equation for many atoms, Eq. (3.2), which means calculating the kinetic and potential
energies (Hamiltonian) for all of them, and they are many (of the order of the Avogadro
number). Simplifications can be made in order to solve the problem, for example, treating
the dynamics of the electrons decoupled from the dynamics of the nuclei, as the adiabatic
approximation does; but the many-body problem still remains. We have

h? Z,Z
- 2 L V(xy, Xyy ooy Xy, R, Ryy oo R \ I\ =EV
(e Z st R Ry - E v

(3.2)

where W =W(x;, x5, ..., Xy, R, Ry, ..., Ry ).

The Hohenberg—-Kohn theorems

It was the ideas of the creators of DFT and subsequent approximations that made the
situation treatable because they reformulated the problem.

The first step was to state (and prove) that “for any system of electrons in an external
potential V., (r) (from the nuclei), that potential is determined uniquely, except for a
constant, by the ground-state density n(r) (r is a point in the space).”

Another statement was “a universal functional for the energy E(n) of the density
n(r) can be defined for all electron systems. The exact ground-state energy is the global
minimum for a given V,,,(r), and the density n(r) which minimizes this functional is the
exact ground-state density.”

With this, one concludes that the functional E(n) alone is sufficient to determine
the ground-state energy and the density. However, this exact functional is unknown!
Furthermore, there was no hint regarding how to obtain it. Later there appeared the
Kohn-Sham Ansatz that showed how to get it.

The Kohn-Sham Ansatz

The Kohn—Sham (K-S) approach simplifies the problem in a very clever way: instead of
having to work with the complicated Hamiltonian, they defined an effective simpler one,
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for non-interacting electrons, which were assumed to have the same density as that in the
real system:

hz
(—EVZ—I—VKS()CI, R..R,, ..., RN[)> ¢:(x\, R\, Ry, .. .. Ry) =€¢(x, R, Ry. .. ., Ry).

) (3.3)

The K-S equations are Schrodinger-like equations, and they are much simpler to
solve, because the effective potential V depends on the coordinates of only one electron.
According to the first Hohenberg—Kohn theorem (Hohenberg and Kohn 1964), it is a
unique function of the electron density because neither the potential nor the density is
known in advance. The K-S equations are solved iteratively, starting with some reasonable
guess for the charge density (which is often taken as a superposition of atomic charge
densities), see Fig. 3.1. The second Hohenberg—Kohn theorem ensures that the converged
solution corresponds to the charge density in the ground state. The total energy of the
system is a unique functional of the density:

n(r)n(r’)

E,+E.[n] 3.4
|r_r/| + 11+ xc[n] ( )

Ealnl = TIn] [ @1 Ve (o) + [[ d'rd*r’

There are various ways to solve these equations numerically and there are several
methods to handle the problem. There are specific computational techniques and they are
implemented in various software codes. Each different way to solve the problem has its
particular advantages and disadvantages, but the important fact is that one needs to know
what each code is calculating and to have complete control of the results and knowledge

° Starting wave functions

!

0 Starting density

!

°, ° Solve Kohn—-Sham equations

l ]\

Calculate new charge density

}

Yes < Converged? > No

Calculate total energy, etc.

Figure 3.1 The DFT method, showing the Kohn—Sham routine for solving the Schrodinger
equation for one effective electron.
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of how to interpret them (Turchi e al. 2007). Bearing this in mind, one should be careful
when analyzing DFT results.

The DFT results at 0K

There are cases for which the theory gives wrong predictions. For example, within the
DFT-L(S)DA (local (spin-) density approximation) bcc Fe is unstable, and even with the
best LDA, germanium is a metal. For the Fe case, use of the so-called generalized gradient
approximation (GGA) (Martin 2004) cures the problem. But it seems that there is no help
to be obtained from the LDA/GGA for solving the band-gap problem in semiconductors
and in this case an approach that goes beyond the DFT is being developed, see Fig. 3.2.

Theory: DFT
Approximations: LDA/GGA
Limitations:
Methods for ionic cores: (a) 100 to 1000 atoms
(b) large computational
(a) all electrons: demand
FLAPW (wien2k, etc.), (c)T=0

PL-LMTO (Methfessel, etc.)

(b) pseudopotential approximation:
plane-wave (abinit, CASTEP,
DACAPO, VASP, etc.),
numerical/local (SIESTA, etc.)

Calculates:

Lattice parameters, total energies, density of states, forces, bulk modulus,
surface energies, etc.

Assessment of predictions:

Calculated values should be checked with experimental results extrapolated
to T=0. They scatter like experimental values, depending on approximations
and method used. It does not work for strongly correlated systems.

Figure 3.2 A schematical view of the first-principles (or ab initio) approach without fitting
parameters: theory, approximation methods, results, and limitations. The items in parentheses are
some of the codes related to the methods.
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Figure 3.3 Total energies for a number of ordered aluminides calculated from first principles by
various authors using various methods. Courtesy of Catherine Colinet.

The good results obtained with the GGA for Fe cannot be used as an argument that
the GGA is better than the LDA in all cases. For example, the GGA is known to provide
better calculated lattice parameters for solids than does the LDA, and as a consequence it
gives better descriptions of the bulk properties. However, the predictions of the GGA for
the estimation of the surface properties are still under discussion. With much experience
having been accumulated by scientists after many calculations using DFT in different
approximations in recent years, some insight has been obtained into the question of for
which quantities each approximation works best.

In Fig. 3.3, total energies for a number of ordered aluminides calculated by various
authors using different methods are plotted in order to give a feeling for the magnitude of
the scatter of the calculated values. One can easily conclude that first-principles results
scatter in a very similar way to experimental data. It is, then, of fundamental importance
to evaluate those results. The best way to do this is to have an expert in these techniques
to help in the evaluation.

Excellent combinations of results from experiments and DFT calculations are given in
papers by Ghosh and Asta (2005) and Ghosh ez al. (2006). In the former they investigate
the phase stability, phase transformations, and elastic properties of a phase, CuySns,
relevant for lead-free solders and in the latter they study ordering in Ti—Zn alloys. The
way they present the theoretical results can be used as standard for publications of the
same type. All values are listed in tables, LDA and GGA results for formation energies
and lattice constants are compared with each other and with experimental results in a very
detailed way; for instance, reported atomic positions are compared with the experimental
ones obtained from X-ray diffractometry. Their paper demonstrates that the DFT results
can be quickly validated by a few experiments using the techniques described in the next
chapter.
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Figure 3.4 Extrapolations of the liquid—fcc solubility curves for Cr—Ni and Cr—Pt (dashed lines)
must end at the same melting temperature of metastable Cr. This point is marked with [J on the
temperature axis.

Calphad enthalpy estimates at 0 K

The stabilities of elements in the various types of lattices are needed in the Calphad
technique. In the book by Kaufman and Bernstein (1970) a combination of first-principles
data and extrapolation techniques is used to estimate these “lattice stabilities.” In most
cases these were obtained from estimates of the entropy of melting and of the melting
point for the metastable phase. The latter could sometimes be estimated from phase
diagrams, for example, for fcc Cr, from phase diagrams with high solubility of fcc Cr. In
Fig. 3.4 this extrapolation is shown by dashed lines in the phase diagrams calculated for
Cr-Ni by Lee (1992) and for Cr—Pt by P.J. Spencer (unpublished work, 1988).

This gives the following Gibbs energy for the fcc and bee phases for pure Cr relative
to the liquid:

GHd _ Ghee = ASHP(T0 ) (3.5)

Liquid fee
GCr - GCr

AS(TE —T) (3.6)

where AS; is the entropy of melting and 7} is the melting temperature. Subtracting
Eq. (3.6) from Eq. (3.5) gives the Gibbs-energy difference between fcc and bee and,
assuming that the heat capacity is the same for both phases, an estimate of the enthalpy
difference between the two phases at 0 K, AH, can be obtained:

Gl — G = (ASF TP — ASF" T/%%) 4 (ASF — ASE™)T (3.7)
AH® = ASP® T — s/ T (3.8)

A calculation of lattice stabilities for transition-metal elements done by Skriver
(1985) gave very different values of the enthalpies at 0K for some of the elements
and this led to severe criticism of the Calphad lattice stabilities. Later it was shown
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that the enthalpy of fcc Cr is in fact impossible to calculate by ab initio meth-
ods because the lattice is dynamically unstable and transforms to a bcc lattice by
the well-known Bain transformation (Bain 1924). The Calphad lattice stabilities have
recently been reviewed by Pettifor (2003) and Sluiter (2006) and the Calphad values
for fcc Cr are now generally accepted, as long as the fcc phase is dynamically stable
(Turchi et al. 2007).

Similar problems with dynamically unstable lattices still occur in ab initio calculations
of more complicated lattices in binary and higher-order systems. The relaxed lattice must
be identified carefully.

Going to higher temperatures, adding the statistics

Quantum molecular dynamics and Monte Carlo simulations

The theory and results discussed thus far are for 7 = 0. In order to have predictions using
DFT for the effects of the temperature, the elegant quantum molecular dynamics (QMD)
approach of Car and Parrinello (1985) is being developed. This technique allows one to
calculate melting temperatures. It has been applied for some elements, for example C,
for which the pressure versus temperature phase diagram was obtained (Grumbach and
Martin 1996).

Monte Carlo simulations can also be coupled to first-principles methods, but they are
more applicable to gases or isolated atoms. However, some progress has been achieved
also for solids.

The cluster-expansion method, plus a CVM or plus Monte Carlo:
the so-called first-principles phase diagrams

Another way to get the statistics for obtaining properties at higher temperatures is to use
the technique called cluster expansion (Connolly and Williams 1983, Sanchez et al. 1984,
Zunger et al. 1990). In this method, starting from the total energies, the configuration
and interactions are decoupled and configuration-dependent quantities are expanded in
clusters. Normally the cluster energies decrease rapidly with size and only a few are
needed, but sometimes very large clusters are needed (Zarkevich and Johnsson 2004).
After this step, two routes can be used to obtain the statistics: a cluster-variation method
(CVM), whereby the configuration entropy is obtained as a function of composition and
temperature; or a Monte Carlo simulation whereby it can also be calculated. From these
quantities the phase diagram can be calculated. Figure 3.5 shows schematically the three
steps for obtaining a first-principles phase diagram.

An example of this method applied to a ternary system is given by Lechermann et al.
(2005). The mapping of bondings for the pure elements Al, Fe, and Ni calculated by the
same authors is shown in Fig. 3.6.

Cluster expansion coupled to a CVM has been reviewed by Colinet (2002). An example
of its use with Monte Carlo simulation is given in Tepesch et al. (1998).
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Al

1. T=0 Electronic structure

Density-functional theory
Effective single-particle (K-S)
Structural relaxation

Phonon spectrum, if possible i hd i

Fe Ni

Al
2. T=0 Lattice Hamiltonian

Cluster expansion

Decoupling configuration and interaction

Expanding configuration-dependent quantities

in clusters

Arbitrary configuration

Given lattice parent Fe

Ni

Al

3. T#0 Statistical Mechanics

Cluster-variation method (CVM)
Generalized mean-field approach
Configuration entropy
Metastable states

Fe Ni

Figure 3.5 A schematic view of a method by which to obtain a first-principles phase diagram.
Courtesy of Frank Lechermann.

First-principles-enhanced Calphad extrapolations of fcc and bcc
with ordering for the Al-Fe-Ni ternary system

Calphad extrapolations from binary subsystems to ternary systems require descriptions of
metastable phases, which, in the case of the binary subsystems of the Al-Fe-Ni system
(for Al-Fe by Seiersten and Tibballs (1993), Fig. 6.5, for AI-Ni by Ansara et al. (1997b),
Fig. 9.16(a), and for Fe-Ni by A.T. Dinsdale and T.G. Chart (unpublished work, 1986)
and 1. Ansara (unpublished work, 1995), in Fig. 5.4(b) later) were not particularly well
described in the initial Calphad assessments.

Later the metastable extension of the fcc phase in AI-Ni was assessed, see Fig. 9.16(b),
as well as the metastable extension of the fcc ordering in Al-Fe and the metastable
bee ordering in Fe—Ni. In the assessment of the metastable phases ab initio calculations
of energies of the ordered phases were used and the reciprocal parameter according to
Eq. (5.151) was included to describe the short-range order.



3.3 Going to higher temperatures 55

fcc-Ni bce-Fe fcc-Al
o o ? o o
/S
FO 0 9 6 S 9]
(@] o (@] (e} (@] (@]
(@] (@] (0] (@]
(@] 00 O O O o O O
] o /C /
% [¢] O (e)
(@] o (@] o o (@] o O o (e)
O o (@] [e) (e) o O O
O o
O @]
0.14 0.06 0.004
012 0.04 0.002
0.10
0.08 0.02 0.000
0.06 —0.00
0.04 -0.002
-0.02
0.02 -0.004
0.00 -0.04
0,02 006 -0.006
jg‘; 0.08 -0.008
-0.08 -0.10 -0.010

Figure 3.6 The bondings for Al, Fe, and Ni calculated in the plane indicated in the cells.
Courtesy of Frank Lechermann.

From the metastable extensions of the binary phases one can extrapolate more reliably
into the ternary system, using the four-sublattice CEF model as explained in section 5.8.4.4
for the ordered fcc phase and a two-sublattice model for the ordered bec as described in
section 5.8.2.4. The Gibbs energies of the ternary tetrahedra in the fcc model representing
the ordered compounds Al,FeNi, AlFe,Ni, and AlFeNi, can initially be estimated from
the binary bond energies u ., U ;> and up.; and the numbers of bonds of each type as

o —

Gararreni = 2uani T 2Uajpe T Upeni
o

Garpereni = Uai +2Uaire + 2Upen; (3.9)
° —

Garpenini = Ui T Uaipe T 2Upeni

The notation for the parameters is explained in chapter 5. Altogether this gives a
dataset, from which the isothermal ternary phase diagram at 1023 K shown in Fig. 3.7(a)
was calculated by B. Sundman (unpublished work, 2003). It can be compared with the
phase diagram in Fig. 3.7(b), which was constructed from experimental data by Bradley
(1951).

The Al-Fe-Ni phase diagram calculated at 1250 K by Lechermann ez al. (2005) using
only ab initio results as described in section 3.3.2 is shown in Fig. 3.7(c).

These calculations illustrate that skilled use of first-principles results for modeling
metastable regions can make Calphad extrapolations more realistic and that these extrapo-
lations can, inversely, give feedback to the first-principles diagrams when cluster expan-
sion is used because a Calphad assessment can provide extrapolations into metastable
regions whereas experimental data are usually scattered and limited to the stable range
of the phases as in Fig. 3.7(b).
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Calculated extrapolation from the
assessed binary Al-Fe, Al-Ni, and
Fe-Ni systems into the ternary sys-
tem at 1023 K. The miscibility gap
between the A2 and B2 phases and
the direction of the Ll phase are
correctly predicted in comparison
with the phase diagram in (b) con-
structed from experimental data,
even though the stability of L1y is
overestimated. The high-Al corner
has not been calculated.

The Al-Fe-Ni phase diagram at
1023 K constructed from experi-
mental data by Bradley (1951).
Reprinted with permission from the
Institute of Materials, Minerals and
Mining.

An ab initio prediction of the Al-
Fe-Ni phase diagram at 1250K.
Reprinted from Lecherman et al.
(2005). Copyright 2005, with per-
migsion from Elsevier.

Figure 3.7 Isothermal sections of Al-Fe-Ni obtained with different techniques.
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Electronic-structure calculations for ordered and disordered
systems based on the CPA approach

In contrast to the methods quoted above, the method based on perturbation theory performs
configurational averaging analytically. One of the most well-known approximations in
alloy theory is the coherent-potential approximation (CPA), which was recently reviewed
in the context of Calphad by Turchi et al. (2007).

Final remarks

In the next chapters the connections between Calphad and the DFT results will be
emphasized as much as possible. It is clear that further development will bring the
theoretical results closer and closer to reality. Combining the calculated results with
experimental data using empirical methods like Calphad will give important feedback
and point out the good and bad trends of the theoretical predictions, at the same time as
providing better predictions for thermodynamic applications.

Thermodynamic functions and phase diagrams calculated from first-principles data
usually show correct trends and topology when compared with experimental data,
but the calculated values are often far from the accuracy needed by scientific or
industrial applications. The Calphad method provides the means to combine the
first-principles calculations with experiments using models with adjustable parame-
ters to reach the required accuracy for applications. At the same time the thermody-
namic models and their extrapolations to metastable states are improved, as shown in
section 3.3.3.

When publishing a paper including first-principles calculations, one should always
compare the results with results from calculations done by other scientists and with
experimental data.

Some years ago first-principles results were described as a kind of caricature of reality.
Nowadays, even though the methods being used are much better, one has the impression
that the picture the theoreticians are trying to paint has no contact with reality. If all
the known experimental data for a system are compiled and checked for consistency
according to Calphad methods, this is a clear image of reality. What one can then expect
the theoreticians to achieve is that, when painting that image, the picture will be able
to talk.
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4.1

4.1.1

the optimization

For numerical use the parametric functions described in chapter 5 must be assessed using
experimental data. To get a maximum of information, all types of measurements that are
quantitatively related to any thermodynamic function of state must be considered. From
this dataset quantitative numerical data for the adjustable parameters of the Gibbs energy
functions are obtained using the methodology described in chapter 6.

In order to evaluate the reliability and accuracy of the experimental data, it is of great
help to know about the various experimental techniques used. Therefore, the main experi-
mental methods in thermodynamic and phase-diagram investigations shall be described
here. Nevertheless, this cannot be done here as deeply as in textbooks teaching experi-
mental techniques, for example Kubaschewski et al. (1993).

Here the main emphasis is on how to use various types of data for the optimization and
how to connect typical as well as more-exotic measured values with the thermodynamic
functions of state.

Since experiments are expensive and time-consuming, all data available in the literature
should be sought and their validity checked before one’s own experiments are planned.
An optimization using only literature data may be a good start, to give an overview,
and may reveal, where the knowledge is poor, which further experiments are best suited
to fill these gaps. Careful planning of one’s own experiments taking this overview into
account can very effectively keep the effort involved to a minimum and results in a very
significant improvement of the optimization.

The measurements can be classified into a few principal types. In the following part,
it will be explained how data may be measured and reported differently, although they
are equivalent, using examples from the literature. As the highest level of classification,
“thermodynamic data” and “phase-diagram data” shall be distinguished.

Thermodynamic data

Calorimetric data

Calorimeters measure heat transfer from a sample to its surroundings or vice versa.
Isobaric heat transfer is identical with the change of enthalpy of the sample, if no other
energy is simultaneously transferred. To be useful for the optimization, the sample must
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represent a “system” that is in a well-defined state before the measurement as well as
there-after. Before the measurement the sample may be separated into several parts,
such that each is in a well-defined equilibrium state, but these parts are not in mutual
equilibrium and react on combination.

Mixing and reaction calorimetry

The principle of this method is that two (or more) well-defined different samples are
combined in the calorimeter and react to give a single sample, which again must be well
defined. Well defined means that all the variables upon which the enthalpy depends must
be known: each sample must be in internal equilibrium; its temperature and composition
must be known. (The pressure is assumed not to vary significantly and must be the same
for all three samples, since the heat change can be identified with the enthalpy change
only for isobaric changes.) The initial states, denoted ” and ”, may be in metastable
equilibrium, as long as they are well characterized:

"

sample”” 4 sample” = sample’

The measured heat loss AQ has to be compared with the corresponding calculated
enthalpy difference:

AQ

enthalpy of reaction product — enthalpy of reactants 4.1)
= enthalpy of sample’ — enthalpy of [sample” + sample”’]

In most cases the two samples before and the single sample after the measurement
are single phases, but samples in heterogeneous equilibrium may in principle also be
used. For single-phase samples the superscripts denoting the samples (", ”, and ") can be
identified with phase indices. The enthalpy difference of Eq. (4.1) can be calculated by
summing up the molar enthalpies (H') of the samples multiplied by their amounts ('),
where the amount of the reaction product is the sum of amounts of the reactants. Each
molar enthalpy is calculated with the appropriate expression from chapter 5 using the
independent variables temperature (7*) and composition (x'), which may be different for
all three samples. They must be referred to the same reference state, for example HS5ER

(SER denotes the stable-element reference state at 298.15 K and 1 bar):
AQ — (m// + m///) . H/(T/, x/) _ [m// . H//(T//, x//) + m/// . H///(T///’ x///)] (4.2)

The independent variables m”, m”’, x", x"', T', T”, and T"” of the samples have to be
evaluated from the reported data; x" is calculated from m”, m"”, x”, and x".
Equation (4.2) may be normalized with respect to amount 1mol for the reaction

product; then for simplification m" is called m and m” is called 1 —m:

Aanrm — H/(T/’ X/) _ [(1 _ l’ﬂ) . HN(T//, x//) +m- H///(TW, x///)] (43)
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Figure 4.1 (a) integral enthalpy; (b) partial enthalpy; (c) curvature of H(x).

Measurements of this type appear in many variations in the literature, depending on

what is mixed in the calorimeter, as shown in Figs. 4.1(a)—(c)

1.

Enthalpies of mixing of binary liquid alloys (Fig. 4.1a). The two liquid pure
elements (amounts 1 —m and m, x” =0, x"" = 1) are separated inside the calorimeter.
After the calorimeter has been heated and is ready for measurement, the two liquids
are mixed, for example by breaking a glass crucible or by opening a stopper. In this
case the three temperatures 7/, 7" and 7" in Eq. (4.2) are equal and identical to the
calorimeter temperature:

AQ = HX)—(1—m)-H(X")—m-H(x")

X = (l—m)~x”—|—m-x'”

Series of mixing-enthalpy measurements (Fig. 4.2). Known amounts of one of the
pure elements are dropped consecutively from room temperature 7" into the liquid
alloy inside the calorimeter, which is the result of the previous measurement. Here
T" =T is the calorimeter temperature. The enthalpy difference H,*(T") — HS*®(T"")
of the pure element which has been dropped in is often subtracted from the
measured value by the authors and only this difference is reported as the result.
Furthermore, if the sample inside the calorimeter is the other pure element in the
first measurement, each measurement of the series is reported as the sum of all
previous measurements, giving directly the integral molar enthalpy of the liquid.
For use in the optimization it is strongly recommended that one recalculate from the
reported values the heat effect of each single measurement by subtracting the effects
of the previous measurements. In measurements with a solid element, the original
temperature 7" may also be important, because the value of H,(T") — HS*}(T"")
included in the accepted parameters for G of the pure element i may differ from the
value adopted by the authors of the experiments.

Partial enthalpies (Fig. 4.1b). If the amount m"” = m of the dropped pure element
in Eq. (4.2) is small relative to the amount m” = 1 —m of the liquid in the
calorimeter, the measurements yield partial enthalpies, approximating JH/JIN,



4.1 Thermodynamic data

Integral enthalpy

Mole fraction B
A B

Figure 4.2 Measuring a series of enthalpies of mixing of a liquid by dropping successively
small portions of the second element (B) into the calorimeter, starting with the pure first
element (A) there.
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by AQ/m. This approximation is exact for one composition between x" and x”, but
this composition is not known exactly. If x" and x” are not very different, the mean
(x4 x")/2 is a good approximation for this mole fraction, where AQ/m is exactly
the partial enthalpy. Unfortunately, some papers report only the resulting partial
enthalpies. In others, however, these partial enthalpies are summed up with all the
previous heat effects of the series and reported as integral enthalpies of mixing as
described in the previous paragraph. The partial enthalpies are then available only
by reconstructing the originally measured values from the reported ones.
Direct-reaction calorimetry. Inside a calorimeter a mixture of the powders of
the pure elements (amounts m” and m") is quickly heated in a small furnace
until it reacts to form a compound. The power input of the furnace is subtracted
from the heat measured. The measurement must include all the heat released until
the sample has cooled down to the starting temperature. Then AQ/(m” + m"")
directly represents the enthalpy of formation of the compound at the starting
temperature of the calorimeter. The completeness of the reaction has to be
checked.
Solution and combustion calorimetry. The terms of Eq. (4.2) may be measured
separately, once by dissolving the compound or solid solution (single-prime
variables) and once by dissolving a mechanical mixture of the two pure elements
(double- and triple-prime variables) in the same solvent inside a calorimeter. If the
final solutions in both cases have the same state (7, x), the difference of the two
heats of solution is equivalent to AQ of Eq. (4.2). The solvent may be an aqueous
acid at room temperature or a liquid metal (Sn, Al ... ) in a high-temperature
calorimeter.

Combustion in a bomb calorimeter is treated similarly. The heats of combustion of
the pure components are subtracted from the heat of combustion of the compound.
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Figure 4.3 Solution calorimetry of an intermetallic compound (CoAl) in liquid of one of the pure
components (Al). The heat of solution of the compound is relatively small and the shape of the
H(x) curve can be measured more accurately than can the value itself.

An advantageous special case of solution calorimetry is when the solvent liquid metal
is one of the elements of the binary system itself. As an example the determination
of the enthalpy of mixing of the CoAl,,, phase by solution calorimetry in liquid
Al (Henig er al. 1980) is given in Fig. 4.3. The enthalpies of solution of the
CoAl phase, A*MH | are relatively small and measured accurately to within about
5%, which contributes less than £1kJ mol™" to the enthalpy of formation. The heat
of solution of the pure components is the negative of the partial enthalpy of Co in
liquid, AH., times the mole fraction of Co in the compound, because the partial
enthalpy of Al in dilute molten Al is virtually zero. To get the enthalpy of formation
from the heat of solution of the phase, one has to subtract the partial enthalpy of
pure Co in nearly pure molten Al. This heat of solution of pure Co, corresponding to
the amount of Co in the phase, is given in Fig. 4.3 by the dashed straight line. The
heats of solution of the phase have to be added to the values given by this straight
line. This is visualized by double arrows for two phases with different Co contents.

The partial enthalpy of Co is much larger than the heat of solution of the phase
and is also measured accurately to within about 5%, contributing about +7kJ mol ™!
to the enthalpy of formation of CoAl. This contribution, however, is the same for
all CoAl samples. The difference of the accuracies of the samples is thus less
than 1kJmol~'. The shape of the H(x) curve is therefore determined to within
+1kJmol ™', although the values themselves may have uncertainties of +7kJ mol "
The shape of the H(x) curve (Fig. 4.1c). If samples 2 and 3 are liquid solutions with
mole fractions that are not very different, the heat effect on mixing mainly reflects
the curvature of the plot of integral enthalpy of mixing versus mole fraction, H(x).
Experiments of this type are seldom reported in the literature because the results
cannot be presented directly in terms of conventional thermodynamic functions, but,
as experiments done especially for the optimization, they may be very useful.
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Further modifications of these techniques may be found in the literature. The treatment
of the experimental results for the optimization, however, should give no additional
problems.

Drop and scanning calorimetry

The principle of these two methods is that a single, well-defined sample in internal
equilibrium is brought from one temperature to another temperature, at which it again
reaches internal equilibrium, and the heat loss or gain AQ is measured. AQ is identified
with the enthalpy difference between the two equilibrium states:

AQ=H'(T',x)—H"(T", x) (4.4)

In drop calorimetry the temperature change is usually large, whereas in scanning
calorimetry it is usually small. The sample in any of the two states may be either single-
phase or in heterogeneous equilibrium. The overall composition x is the same for both
states. The phases in the two states may, however, be different.

In scanning calorimetry, if both states contain the same single phase, then, instead of
using Eq. (4.4), the measurement may be identified with the heat capacity C,:

A
C,(T,x)~ A—g (4.5)

In continuous scanning calorimetry even dQ/dT may be measured directly. With scanning
calorimetry across a melting or transformation temperature, the enthalpy of isothermal
melting or transformation may be measured by extrapolating to AT = 0. For more details
see Hoehne et al. (1996).

Chemical-potential data

These measurements are classified into evaluations of the emf of reversible galvanic cells,
of vapor pressure, of equilibria with a well-defined gas mixture, and of the solubility
in a nearly inert solvent (treated as a Henrian solution). In these cases two different
equilibrium states are considered, between which just one element can be transferred by
a process that, in a Gedankenexperiment, can be carried out reversibly. One of the states
is usually the pure element itself.

The data may be reported either as differences of chemical potentials (partial Gibbs
energies) Au or as activities a, which are connected by the formula Ay = RT In(a). In
the least-squares method it is important to have nearly equal probabilities for positive
and negative “errors,” so the function p or In(a) = w/(RT) is in most cases more suitable
than the activity a.

Galvanic cells

In a reversible galvanic cell the more electronegative element can be transferred from the
pure element to the alloy (single-phase solution or two-phase equilibrium state) or vice
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versa by an electric current. If the current is interrupted, in a reversible cell the exchange
is totally inhibited. The electric energy per mole transferred is identical to the difference
in partial Gibbs energy,

W' —°G,=U-Z-F (4.6)

where U is the voltage of the cell, Z the charge of the ion, and F the Faraday constant.
Z - F is the electric charge transported with one mole of the element and thus U-Z - F is
the electric energy which can be gained by diluting one mole of the pure element in the
alloy or which must be provided to retrieve it from the alloy.

There are various experimental realizations of galvanic cells, but they always contain
two electrodes separated by an electrolyte. The electrolyte may be a molten salt (one that
is often used is the eutectic mixture of KCl and LiCl with some chloride of the metal, the
ions of which are to be transferred), a solid ionic conductor (Y-doped ZrO,, CaF,), or an
aqueous solution. The electrode may be of the “first kind,” i.e., the metal is in equilibrium
with its own ion (Zn /Zn2+), or of the “second kind,” i.e., the electrode is surrounded by
an insoluble salt and discharging of cations releases anions into the electrolyte or vice
versa (Ag/AgCl/Cl™, Ni /NiO/Oz_). An electrode of the second kind may be measured
against a reference electrode based on an anion, for example

Cu (in an Au—Cu alloy) 4 Cu,0/ZrO, (doped with Y,05)/0,(Pt)

or the reference electrode may be an electrode of the second kind with another cation,
for example

(Mo)/Cu (in an Au—Cu alloy) + Cu,0/ZrO, (doped with Y,05)/Ni+ NiO/(Mo)

The condition of reversibility of the cell is that the conductivity of the electrolyte
must be purely ionic and that only one element must be discharged or ionized at each
electrode and the valence of ionization must be well defined. The reversibility is proved
by reaching the same stable equilibrium voltage after passing a current in both directions.

Usually the results are reported as the voltages U of the cells, sometimes only the
resulting values of Au (U-Z-F in Eq. (4.6)) or In(a) (U-Z-F/(RT) in Eq. (4.6))
are reported.

Since it is possible to make many measurements with the same cell by changing
the temperature, the measured values are often reported not directly but rather as linear
functions smoothing the measured values of each cell, U=A+B-Toru=A+B-T.
More exactly, that should be a very slightly curved function with a three-term formula
U=A+B-T+C-T -In(T), but usually the values are not accurate enough for one to
determine C, which represents the difference AC, between °C, of the pure element i and
the partial C,; of the alloy. When using such information for an optimization, the values
for one sample may be represented by two or three values from this formula, taken from
the lowest and highest quarter of the temperature range investigated and, if C is given,
also from the center of the range.
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A, values in a two-phase field between an intermediate phase ® and the nearly pure
element B are usually reported as Gibbs energies of formation of the intermediate phase
®. This is possible because generally G® =3 ;- u; and, in a two-phase field with pure
element B, uy —°Gy = 0 and therefore G® — 3 (x;-°G,) = x, - (up —°G,), i.€., the Gibbs
energy of formation of phase ® and Au, in the two-phase field between @ and the pure
element B are proportional. If the formula for ® is A B, the Gibbs energy of one mole
of ® (i.e., of p+ 1 moles of atoms of ®) is identical to Au, since x =1/(p+1).

If the galvanic cell contains a reference electrode other than the pure element, the
voltage of a cell with this reference electrode and the pure element must be subtracted from
the measured voltage in order to get the voltage U of Eq. (4.6). If this was not measured in
the same investigation, it must be calculated from a thermodynamic database considering
the Gibbs energy change of the reaction connected with the cell containing the reference
electrode and the pure element; and then this value of G must be divided by Z - F.

Vapor pressure

If one of the elements of an alloy is much more volatile than the other one(s), the vapor
phase above this alloy contains virtually this element only. Its partial pressure can be
compared with that above the pure element at the same temperature. In a Gedanken-
experiment the element can be transferred reversibly between the two vapor phases by
an ideal-gas engine. The work connected with the transfer of 1 mol of vapor of element
i is equal to the change in chemical potential of element i. It is calculated by integrating
V dp between the two pressures, assuming the volume V to be expressed by the ideal-gas
equation of state, V=R -T/p:

alloy
' =G, =r-T- [ P RT ™ p) (4.7)

°pi p

where °p; is the vapor pressure of the pure component i at the same temperature.

This is true for monatomic vapor only. For diatomic vapor molecules Eq. (4.7) gives
half the w-value and for n-atomic vapor molecules one nth of the w-value. If the vapor
phase is a mixture of monomer atoms and polymeric molecules, the partial pressure of a
single species should be measured rather than the total vapor pressure above the alloy as
well as above the pure element.

There are several experimental methods for vapor-pressure measurements.

4.1.2.2.1  Direct pressure measurement Direct measurement of the vapor pressure
by a manometer can seldom be done at high temperature. Firstly the material of the
manometer must not react with the sample and secondly the manometer must not be
affected by high temperature. The vapor pressure of Te was measured in this way: the
sample was included in a sealed silica-glass vessel with a deformable thin-walled part
enclosed in an atmosphere of nitrogen with adjustable pressure. By use of a lever with
a mirror a deviation of the position of the thin-walled part could be recognized. The
pressure of the outer atmosphere was always controlled to keep the mirror at the same
position and thus was equal to the vapor pressure of the sample.
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4.1.2.2.2  Optical spectroscopy of the vapor phase If the volatile component does not
attack glass, the sample may be sealed into a glass vessel with two parallel windows,
which is put into a furnace. By measuring the absorption at a characteristic wavelength
of the gas, the partial pressure is measured. For calibration, the pure volatile element may
be measured similarly.

4.1.2.2.3  The gas-transport method The substance is in a boat inside a furnace,
where an inert gas (usually argon) flows a measured flow rate. The volatile component
evaporates, is transported with the gas, and, before the end of the furnace, is condensed
on a water-cooled finger of glass or ceramic. The amount of condensed material is
determined by measuring the change in weight of the finger or by chemical analysis of
the dissolved deposit, and divided by the total volume of gas that has flowed through the
furnace. The measurement is usually done with different flow rates of the gas and the
measured concentration of the volatile component in the gas is extrapolated to zero flow
rate. This is assumed to be the concentration of the saturated gas and is transformed into
a partial pressure.

4.1.2.2.4  Isopiestic and dew-point methods The sample is sealed in an evacuated tube,
within which at some distance a sample with known partial pressure of the same volatile
component is situated. The tube is kept in a furnace, where the temperatures of sample
and reference sample can be controlled independently. The volatile component may now
move from the reference sample to the sample or vice versa until both have the same
vapor pressure. Then the tube is rapidly cooled and the sample analyzed.

The partial pressure of the reference sample should not vary rapidly with composition;
preferably it is a binary two-phase sample or the pure volatile element itself at a lower
temperature. It has to be checked that no part of the tube has a temperature lower than
the boiling point or sublimation temperature of the pure component.

A modification of this method is the measuring of the dew point: the pure element is
present not as a sample, but at the end of the tube, which is usually of glass. The furnace
has a small window and the temperature there is slowly decreased until a dew of liquid
or solid pure element condenses there. The temperature is raised and decreased again by
small values, to see whether condensation and re-evaporation can be done reversibly and
to get the equilibrium temperature as accurately as possible. The vapor pressure of the
pure element must be known as a function of the temperature:

In(p) = ? +B+C-In(T) (4.8)

which reflects the AG between condensed and gaseous pure element; then the logarithm
of the activity In(a) =In(p/p,) can be directly calculated from the temperature difference
AT between sample and dew point:

dIn(p)
dT

= (—%Jr%) ‘AT (4.9)

In(p/py) ~ — AT
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The temperature T in this formula is approximated by taking the mean of the sample
temperature and the dew-point temperature.

4.1.2.2.5 The Knudsen cell Low vapor pressures, below 107! Pa, are measured by a
Knudsen cell. The sample is enclosed in a container with a small orifice. The volume
inside the container virtually reaches the equilibrium vapor pressure and the molecular
beam emanating from the orifice is proportional to this vapor pressure. To measure the
intensity of this molecular beam several methods have been used.

1. It may be collected on a target during a measured time and then analyzed.

2. The Knudsen cell is suspended on a very sensitive micro-balance and the weight
loss is recorded continuously.

3. The molecular beam is bombarded with low-energy (~10-eV) electrons and the
resulting ions are analyzed by mass spectrometry. This is the most-often-used tech-
nique nowadays.

In using the Knudsen cell together with mass spectrometry, the main problem is
deviations of the calibration after changing the sample, which makes it difficult to get

I
comparable values for pi >

i
size of the orifice, the orientation of the Knudsen cell with respect to the ionization
chamber, and the effectivity of the ionization, which is the factor correlating the density
of the molecular beam with that of the ion beam and, finally, with the recorded signal.

Various methods to diminish the influence of these effects have been reported.
Most of them cannot be discussed here, but for each use of reported experimental
Knudsen-cell data in an optimization the description of the experimental procedure
must be carefully studied with respect to this problem in order to judge the quality of
the data.

Neckel and Wagner (1969) proposed that, if the vapor pressures of the two com-
ponents are of the same order of magnitude in a binary system, one could measure
the ratio of the two vapor pressures over the whole composition range. Their only
assumption is that the factor of proportionality between the vapor pressure and the
recorded signal changes equally for both components in different experiments. This
eliminates the influence of the size of the orifice, orientation of the Knudsen cell, and
electron-beam intensity in the ionization chamber (which is not the mean energy of an
electron).

and °p; in Eq. (4.7). The main sources of variation are the

Equilibria with gases of known activity

A gas mixture containing H, and H,O molecules at high temperatures provides a well-
defined chemical potential of oxygen. Depending on the H,/H,O ratio, between 0.01
and 100 a range of Auy = RT In(10000) is covered. A sample in contact with such a
gas mixture will take up or release oxygen until w, reaches the equilibrium value. By
analyzing the final oxygen content of the gas the chemical potential of oxygen can be
determined.
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Solubilities in Henrian solutions

In dilute solutions, according to Henry’s law the activity of a solute is proportional to its
mole fraction. Therefore the mole fraction of an element in a dilute solution may be used
as a measure for the activity. A sample may be immersed in a liquid that does not dissolve
in it and itself dissolves only small amounts of the sample at a particular temperature, at
which equilibrium is reached within a reasonable time. The equilibrium mole fraction(s)
of one or several components in the liquid are compared with those of samples with
known activities of these components, which have been treated in the same way.

Binary phase-diagram data

The quantities measured in binary phase diagrams are either (i) temperatures of invariant
(three-phase) equilibria (points (a) in Fig. 4.4), or points (x’, T) on the boundaries of
two-phase fields. The latter points can be measured either (ii) for samples of known
composition x' by determining the temperature T (points (c) in Fig. 4.4), or (iii) for
a series of samples of different composition x, annealed to equilibrium at the same
temperature 7', determined to be single-phase or two-phase (points (b) in Fig. 4.4).
The corresponding values calculated with the least-squares method are (i) the calculated
temperature, where besides the amounts of the three phases (arbitrary, but >0) only the
pressure is given; (ii) the calculated temperature of the two-phase equilibrium, where
besides the pressure, the amounts of the two phases and the composition of one phase are
given; or (iii) the calculated composition x" of one phase in the two-phase equilibrium
at given temperature and pressure. (Note that in cases (ii) and (iii) the two phases of the
equilibrium are treated differently in the least-squares calculation.)
There are several experimental methods to measure phase-diagram data.
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Figure 4.4 Types of measurements in a binary phase diagram: (a) ® the temperature of
three-phase equilibrium, (b) B the mole fraction x’ measured at a given temperature 7, and
(c) # the temperature T measured at a given mole fraction x'.
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Thermal analysis

A sample is heated or cooled and its temperature recorded with time. When the sample
is going from a single-phase equilibrium state into a two-phase field, some heat of
precipitation is released. This leads to a kink in the temperature versus time curve. The
sensitivity of the method can be very much enlarged by the use of differential thermal
analysis (DTA). The sample and an inert reference sample are symmetrically located in a
block. Besides the temperature of the sample, the temperature difference between sample
and reference sample is recorded (Fig. 4.5). As long as there is no reaction in the sample,
the temperature difference follows the furnace temperature in approximately the same
manner as does the temperature of the reference sample and the AT(¢) curve remains
near zero. If now the sample crosses the boundary to a two-phase field, the released heat
delays the temperature change of the sample and AT(f) shows a kink. The temperature
difference versus time curve (AT(7)) can be much more amplified than the T(z) curve of
a normal thermal analysis.

In a three-phase (invariant) equilibrium the reaction evolving the heat takes place at
constant temperature. In the thermal analysis this shows up as a horizontal part in the
T(z) curve. The length of the horizontal part is roughly proportional to the amount of
matter reacting in the three-phase equilibrium. Plotting this length versus mole fraction
for a eutectic reaction gives a triangle, called a Tammann triangle, whose vertex indicates
the mole fraction of the eutectic liquid. If the DTA is performed in a scanning calorimeter,
the result of the Tammann triangle is quantitatively correct. For peritectic reactions,
however, due to usually severe segregation, the Tammann triangle must be used with
caution.
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Figure 4.5 The diagram in (a) shows heating and cooling DTA curves for a sample with
81 mol% Cu in Ba—Cu, courtesy of R. Schmid-Fetzer. The phase diagram assessed by
Konetzki et al. (1993) is shown in (b). The curve illustrates the large undercooling for the
high-temperature peritectic and very small undercooling for the medium-temperature
three-phase equilibrium.
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For a two-phase field boundary the sensitivity of the thermal analysis is much larger
for flat boundaries than for steep boundaries. First the amount of matter reacting in a
given temperature interval, for example 1K, can be derived by the lever rule from a
tie-line just 1 K below the boundary and is the larger, the flatter the boundary. Secondly
the Gibbs—Konovalov rule (Goodman ez al. 1981) Egs. (2.50) and (2.50), shows that also
the “enthalpy of reversible precipitation” is larger for flatter boundaries. The enthalpy of
reversible precipitation in principle is identical to the heat released in the DTA experiment.
An overview on the field of thermal analysis is given by Shull and Joshi (1992). A very
detailed paper about DTA measurements and interpretation of the corresponding results
is that by Boettinger and Kattner (2002).

Properties versus temperature

In thermal analysis a singularity of the enthalpy versus temperature curve H(T) is used
to identify the boundary between different fields of a phase diagram. In principle any
other property can be measured versus 7 instead of the enthalpy H. A kink of the
property versus temperature plot indicates a boundary in the phase diagram. Examples of
properties used for this purpose are dilatometric measurements (the length of a sample
versus temperature) in the Mg-Zn system, used by Grube (1929); electric conductivity
in the Zr-O systems, used by Gebhardt ef al. (1961); and magnetic susceptibility in the
Fe—Nb system, used by Ferrier and Wachtel (1964).

Properties versus composition

Similarly to how a property can be plotted versus temperature, it can be plotted versus
composition (mole fraction). The main difference is that the temperature of a single sample
may be changed continuously and the property recorded. For the composition dependence,
however, many samples with different compositions are annealed to equilibrium at the
same temperature and the property is measured for these different samples. In principle the
same properties can be plotted versus temperature or composition, but several properties
are much more usefully plotted versus temperature whereas others are better plotted
versus composition.

A property preferably plotted versus composition is the lattice parameter measured by
X-ray diffraction. It is constant in a two-phase field and varies in a single-phase field. If
the decomposition of supersaturated single-phase samples can be prevented by quenching,
this facilitates its use. Several samples of a phase ¢ are equilibrated at the temperature
of maximum solubility and quenched and a lattice parameter versus mole fraction curve
a®(x) of ¢ is generated. A single two-phase sample containing ¢ is now equilibrated at
different temperatures and quenched, and the lattice parameter of ¢ is measured. Using
the a®(x) curve as the inverse function, x(a?), the corresponding mole fraction of ¢ is
read. For non-cubic phases this procedure should be carried out with all the different
lattice parameters of the phase.

The electric conductivity p is a property that can be used as a function of either
temperature or mole fraction. An example is in the paper of Grube (1929), which was
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used in the assessment of the Mg—Zn system (Agarwal et al. 1992). In a p(x) plot as well
as in a p(T) plot, there is just a kink of two not necessarily linear curves at the boundary
between a single-phase and a two-phase field.

Metallography

A very useful tool in phase-diagram determination is micrography, which, for metals, is
often called metallography. Much of the information from metallography is qualitative
and, although very useful in general, cannot directly be used for the thermodynamic
optimization.

Boundaries in phase diagrams are often deduced from series of samples of different
compositions equilibrated at several selected temperatures. The results for a “single phase”
or “two phases” are plotted in a temperature versus mole fraction diagram (a conventional
phase diagram). The boundaries between single-phase and two-phase fields are now
mapped in such a way as to satisfy these results. Quantitatively, a result may be expressed
as a point on the boundary (represented by x’ and T'), centered between two consecutive
samples found to be respectively “single-phase” and “two-phase” =+ half the distance
(AxX'/2 or AT/2).

A large advantage of micrography is that phases decomposing on quenching can usually
still be identified from their shapes. For example, droplets of liquid present in the sample
at the annealing temperature, although they become solidified during quenching, are
usually well detected as rounded areas of fine-grained material between solid crystallites
of much larger grain size.

Electron micrography and scanning micrography may in principle be used for the
determination of boundaries in phase diagrams in the same manner as optical micrography.

Quantitative metallography

In the micrograph of a two-phase sample the ratio of the areas covered by the images of
the two phases can be measured and it is approximately identical to the volume ratio of
the two phases. If the molar volumes of the two phases are known, the molar ratio can
be calculated from the volume ratio. This molar ratio may, for example, be expressed as
moles of atoms of phase 1 in a total amount of one mole of atoms, m’. This value appears
also as the calculated value in the description of an equilibrium in Eq. (2.23) and thus
can be used in the least-squares calculation.

Unfortunately, in the literature this type of measurement is seldom used for the con-
struction of a phase diagram. In the above-mentioned use of micrography the “two-phase”
samples have the potential to give more information: even a very rough estimate of the
amount of the second phase (here usually a very small amount) quantitatively gives the
distance of the boundary from the composition of this sample.

For the quantitative use of this type of measurement, a source of systematic errors
must be taken into account, namely that during grinding and polishing one of the phases
may be more easily removed than the other. Then, compared with the ideal geometry of
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the micrograph surface, this other phase presents a larger surface area than it should do
according to the above statistical consideration.

Microprobe measurements

In the electron microprobe, areas of the order of 1pum? can be chemically analyzed
by X-ray spectroscopy. If a two-phase sample is annealed for long enough for it to
have grain sizes of several diameter micrometers and to have both phases in equilib-
rium, the equilibrium composition of both phases can directly be analyzed. The litera-
ture contains several methods used to take care of the X-ray absorption in the sample
by deducing amounts of elements from measured X-ray intensities of their character-
istic wavelengths. Transmission electron microscopy (TEM) instruments can also do
this, with a very much higher resolution. A good general reference for TEM is the
book by Williams and Carter (1996). With the technique called ALCHEMI (Spence
and Tafto 1983) the state of ordering can be determined and point defects identified
(Jones 2002).

Ternary phase-diagram data

The methods used to localize boundaries in ternary phase diagrams are in principle the
same as for binary ones, but there are now two independent variables describing the
composition and consequently there may be two different types of measurements of mole
fractions for the same phase with two different interpretations.

Thermal analysis in ternary systems

The temperature of the beginning of primary crystallization (on cooling a single-phase
liquid until the first precipitation occurs) and the temperature of an invariant equilibrium
are found in the same manner as in a binary system. The Tammann triangle, constructed
from the duration of isothermal solidification, now becomes a pyramid constructed over
two independent composition variables, e.g., mole fractions. Between primary crystal-
lization and invariant equilibrium, however, there may be the beginning of a secondary
crystallization with an additional kink in the thermal-analysis line (section 4.3.4).

Two-phase tie-lines

At the end of a two-phase tie-line the two independent variables defining the composition
may be interpreted as two vectors, which can be combined to give one in the direction
of the tie-line and another one parallel to the boundary of the two-phase field against a
single-phase field. Changing the latter vector, without looking also to the second phase,
simply means selecting another tie-line. The first vector, however, describes the length
of the tie-line and thus the position of the boundary, for example a ternary solubility.
By the same methods as in binary systems, two different types of measurements may be
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performed: either the temperature may be measured, where this boundary is at a given
composition; or the composition may be measured, where this boundary is found at a
given temperature. At a given composition the temperature may be measured by thermal
analysis, whereas the composition can be determined by metallography, X-ray lattice
parameter measurements, microprobe measurements of quenched samples, or any other
of the methods used for binary systems. The lattice parameters, however, in contrast to
those of a binary system, may vary also within the two-phase field, unless the samples
are situated along the same tie-line.

If temperature is the measured quantity, the “calculated value” F; of Eq. (2.52) is
the temperature of the tie-line, calculated for the composition of phase 1 fixed at the
experimentally determined composition using Eq. (2.38). Both phases must be identified
for the calculation.

If the composition of « is the measured quantity at a given temperature, the tie-line
passing through this experimentally determined composition is calculated for the given
temperature by using Eq. (2.42), see Fig. 4.6. The difference between “calculated” and
“measured” compositions must be taken parallel to the tie-line and may be related to
the total length of the tie-line. This is equivalent to calculation of the phase amount of
B referred to the measured composition of « as the overall composition (symbols B in
Fig. 4.6).

mP = (x%(calc) — x¥(meas))/(x*(calc) — x?(calc)) (i=B, C) (4.10)

This “amount” can directly be interpreted as the “error” F; — L; according to Eq. (2.52). It
is zero if the calculation exactly reproduces the experiment. If the measured composition
is outside the calculated two-phase field (a+ 3 in Fig. 4.6), then this “amount” formally
becomes negative.

a+
A B

Figure 4.6 Tie-lines of a ternary two-phase field at a given temperature: B measured
composition of phase «, ¢ calculated composition of « in the tie-line passing through H, A two
points experimentally determined to be on the same tie-line (not necessarily the endpoints of the
tie-line), and @ calculated endpoints of tie-lines not directly related to measured points.
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4.3.3 Directions of two-phase tie-lines

The composition vector parallel to the boundary between two-phase and single-phase
fields becomes meaningful when it is compared with the other end of the same tie-line.
Measuring both ends of the same tie-line means measuring the “direction of the tie-line.”
An often-used method for that is the simultaneous determination of the compositions of
both phases by microprobe measurements. Another common procedure is measuring the
lattice parameters of one or both phases for two series of samples along two lines in
the two-phase field that are approximately parallel and near the two boundaries. Samples
with the same lattice parameters but in the two different series lie on the same tie-line
(Fig. 4.7).

As a measure of the “error” F; — L, in Eq. (2.52), the vector product of calculated and
measured tie-lines may be used, both tie-lines being interpreted as vectors in the xg—x
plane. The calculated tie-line may be selected using the center of the measured tie-line
as the overall composition in Eq. (2.42),

cxg —C)Cg cxg _cxfC;

5 5 | = error (4.11)
m,.a m m,.«a m
Ag— X Xc T Xc

where °x* and ™x? denote the calculated and measured mole fractions of component i in
phase ®, respectively.

A tie-line connects composition points where the chemical potentials u; are the same
in both phases. This point of view is often helpful if the two phases are nearly binary in
two different subsystems of the ternary. An experimental tie-line of this kind indicates
equality of the chemical potential of the element common to both binary subsystems. The

Lattice parameter a“
N

X/ xZ

(a) (b)

Figure 4.7 Determination of the direction of tie-lines by lattice-parameter measurements. With
two-phase a4 8 samples of compositions along the two dashed lines 1 and 2 in (a) (e) the lattice
parameter of the & phase, a®, is measured and plotted against a composition variable in (b) (here
xc/xE%, i.e. 0—1 along dashed lines 1 and 2). Points with the same lattice parameter a® are on the
same tie-line. Two pairs of points, (A) and (V), are selected in (b) and re-translated to (a).
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calculated values of these chemical potentials, however, are given by the descriptions of
the previously optimized binary systems. Such a measurement is therefore a check of the
compatibility of the two binary descriptions.

Ternary three-phase equilibria

The composition of one phase of a three-phase equilibrium is described by two inde-
pendent mole fractions. Similarly to the case of a ternary two-phase field, two different
measurements of the composition of one of the equilibrium phases can be defined for a
given temperature. They may be described as two different linear combinations of the
mole fractions, perpendicular or parallel to the line connecting the compositions of the
other two phases. The measurement perpendicular to this line corresponds to the length of
a two-phase tie-line, whereas the measurement parallel to it corresponds to the direction
of a tie-line. The latter, like the directions of two-phase tie-lines, may help as a check of
the binary descriptions. Besides the two composition variables of one of the phases of a
three-phase equilibrium, also those of a point on the boundary between the three-phase
equilibrium and one of the adjacent two-phase equilibria can be measured.

The experimental methods are the same as for isothermal two-phase equilibria. Lattice
parameters are constant within a three-phase field.

Instead of measuring the composition at a given temperature, the temperature can be
measured for a given composition, for example by thermal analysis. The secondary effect
of a thermal analysis corresponds to the temperature at which the boundary between the
three-phase field and an adjacent two-phase field crosses the overall composition of the
sample. If the phase of primary crystallization has a range of homogeneity, its composition
usually changes during solidification and the measured temperature, due to this segre-
gation, might not be the equilibrium temperature. Therefore this kind of measurement
should be used for the optimization only, if the primary phase is stoichiometric.

In principle, for temperature measurements at a given composition the same cases
should be distinguished as for isothermal composition measurements. Fixing both inde-
pendent mole fractions of an overall composition is, however, usually incompatible with
getting a single phase of a three-phase equilibrium.

Besides measurements of boundaries of a phase diagram, phase amounts in equilibrium
can be measured by various methods, for example by quantitative metallography, for
three-phase as well as for two-phase equilibria at a given overall composition. The
corresponding calculated value is determined by applying the lever rule, if it is not taken
directly from the solution of the equilibrium conditions Egs. (2.23)—(2.27).

Multicomponent and other types of experimental data

Experimental data from multicomponent systems are usually not used directly in an
assessment, but, if the extrapolation from the lower-order systems gives wrong results,
one may use them to modify parameters describing the lower-order systems. For example,
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phases that are not stable in a binary system may have parameters assessed from a higher-
order system such as the fcc phase in the Cr—Mo system. Great care must be taken to
ensure that such modifications do not change the descriptions of the lower-order systems,
for example by letting a metastable phase appear to be stable.

In PARROT any measured quantity of a state variable, or a combination of state
variables, can be used as experimental data, provided that there is at least one extra
quantity measured in addition to those needed to be set as conditions for the equilibrium.

X-ray and neutron diffraction

These techniques are especially important for the determination of crystal structures and
require a single-crystalline sample. Lattice parameters and site occupancies as functions
of composition and temperature can be obtained. In cases of crystals with elements having
similar X-ray-scattering factors, these techniques can be used complementarily since
the atoms can be distinguished on the basis of their different nuclear scattering factors
(Grytsiv et al. 2005). Ordering can be observed as shown in Fig. 4.8, where superstructure
lines related to carbon-vacancy ordering are observed only by neutron diffraction (Grytsiv
et al. 2003).

Rietveld refinement

The Rietveld method allows the determination of site-occupancy parameters by analyzing
intensity ratios of X-ray- or neutron-diffraction spectra of polycrystalline samples. An
overview of this technique is given by Joubert (2002).

Mossbauer spectroscopy and perturbed angular-correlation
measurements

These techniques can measure local states of ordering and site occupancy as well. The
former, described by Lee er al. (2005), is very appropriate for systems containing Fe.
The latter requires the incorporation of a radioactive probe into the sample. Binczycka
et al. (2005) reported a combination of these two methods and compared their results
with neutron-diffraction results. Both techniques can measure properties as functions of
temperature, composition, and pressure.

Final remarks

There are certain experimental data that cannot be used with the selection of models
described in the next chapter; they are, however, important and should also be scanned in
order to help provide an educated guess about the models to be used. For example, even
if lattice vibrations are not modeled explicitly, the literature data about phonon spectra
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Figure 4.8 X-ray and neutron data showing superstructure formation due to carbon-vacancy
ordering. Courtesy of Peter Rogl.

should be scanned. Information about the order of magnitude of these effects can give
hints about the size and sign of the excess terms for the Gibbs energies. Techniques
measuring the elastic constant, bulk modulus, and thermal expansion are important and
give results that should also be taken into account since they are related to derivatives of
the Gibbs energy.






Models for the Gibbs energy

In this chapter a number of models for the thermodynamic properties of various phases
will be described. The integral Gibbs energy will be used as the modeled thermodynamic
property. The reason to model the Gibbs energy rather than any other thermodynamic
function is that most experiments are done at constant temperature and pressure. From the
Gibbs energy all other important quantities can be obtained according to Egs. (2.12). Using
the Gibbs energy means that the modeling is limited to a “mean-field” approximation.
Thermodynamic calculations using “Monte Carlo” methods or “molecular dynamics”
are outside the scope of this presentation, but these techniques can provide important
information about the type of mean-field model to be selected.

A phase may sometimes have a particular physical or chemical feature that requires
a special model in order for it to be described accurately. It is not uncommon that the
mathematical expression for such a model may be identical to the expression derived to
describe another physical feature. That simply means that the mathematical expression
is more general than the physical model. Whenever such a generalized expression can
be obtained, it will be called a formalism. A general formalism should be able to handle
cases when various constituents added to a phase behave differently, for example some
may dissolve interstitially or cause chemical ordering. Most of the models used in this
book are special cases of the compound-energy formalism (CEF). The physical meanings
of the CEF parameters in various models differ and this will be discussed in detail.

The models for the phases in a thermodynamic system can be selected independently,
except for the case when two phases are members of a structure family. Phases with
chemical ordering form structure families and they may be modeled with the same Gibbs
energy function, but usually only rather simple structural relations can be described with
a single Gibbs energy function, for example A2/B2 and Al/L1,.

The Gibbs energy for a phase can be attributed to two main factors, the bonding
between the constituents and their configuration. The configurational part always enhances
the mixing of unlike atoms. The bond energy between two unlike atoms may be either
more negative than the bond energy between two equal atoms (creating a tendency for
compound formation or ordering) or more positive (creating a tendency for there to be a
miscibility gap).

The selection of the model for a phase must be based on the physical and chemical
properties of the phase, for example crystallography, type of bonding, order—disorder
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transitions, and magnetic properties. Most of the models for crystalline phases described
here will take into account the crystal structure of the phases by dividing it into sublattices
characterized by different crystallographic symmetries and numbers of nearest neighbors.
Sometimes a sublattice has just a single constituent, but usually several constituents can
enter a sublattice. By selecting one constituent in each sublattice, one has a stoichiometric
compound with fixed composition. The Gibbs energy of formation of that compound
contains the most important part of the bond energies. In the simplest case the compound
can be a pure element if the phase has a single set of sites and the elements as constituents.
Any solution phase has at least two such compounds and they are then called the “end
members” of the solution phase. The end members define the limit of solubility, but the
model may have end members with a composition inside the composition range of the
phase. Examples of this are a gas phase with molecules such that each molecule is an
end member and an ordered phase in which some end members represent the possible
ordered states. See also section 5.2.3.

In order to describe the measured phase equilibria and the thermodynamic properties
of a system, it is necessary to adjust a number of parameters in the Gibbs-energy model
of the phases. The aim of this book is to teach the reader how to make a good choice of
models and obtain the best possible set of model parameters that describe the experimen-
tal information and are useful for extrapolations to multicomponent systems. The term
parameter will be used for a quantity that is part of a model, like excess parameter.
Some parameters can be a function of temperature, pressure, or even composition, and
thus can be split into several other parameters. Each parameter may consist of several
coefficients and a coefficient is always just a single numerical value. In the PARROT
software, see section 7.3, the term variable is used with the same meaning as coefficient.

The selection of models described here has been based on those currently implemented
in either of the two software packages that are described in more detail in this book. New
models are continuously being developed and added to the software, so a future user can
expect to have an even larger choice of models than that described here.

The general form of the Gibbs-energy model

The total Gibbs energy of a phase 6 is expressed as
] sef 0 hys ~ enf of E ~0
G? =¥G, +"MG, —T. s +EGY (5.1)

The superscript 6 denoting the phase will normally be omitted in the rest of this chapter
since all expressions are valid for a particular phase. The pre-superscript “srf” stands for
“surface of reference” and represents the Gibbs energy of an unreacted mixture of the
constituents of the phase. Not included in this is the quantity P»*G,, which represents the
contribution to the Gibbs energy due to a physical model such as magnetic transitions, as
described in section 5.4. These models may be composition-dependent through particular
physical quantities like the Curie temperature and the Bohr magneton number.

The pre-superscript “cnf” stands for the configurational entropy of the phase and is
based on the number of possible arrangements of the constituents in the phase given
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by Eq. (2.9). This can easily be extended to include random arrangements on several
sublattices. More elaborate methods to predict the entropy of configuration, like the
cluster-variation method (CVM), can be derived for specific crystalline structures and
will be discussed in section 5.7.2.2.

The term with pre-superscript “E” stands for the excess Gibbs energy and describes the
remaining part of the real Gibbs energy of the phase when the first three terms have been
subtracted from the real Gibbs energy. This partitioning means that there is no attempt
to model the physical origins of the Gibbs energy, except those included in PG, . The
terms G, and EG,, will thus include configurational as well as vibrational, electronic,
and other contributions.

In this chapter a number of models for the various parts will be described. The temper-
ature and pressure dependences of the Gibbs energy for a phase with fixed composition
will be described first. Then the magnetic model will be described as an example of a
physical property that is modeled separately. The reason for a separate description of this
contribution to the Gibbs energy is that the magnetic properties of the phase depend on
the critical temperature for magnetic ordering and the Bohr magneton number, and the
composition dependences of these quantities must be described separately. The descrip-
tion of the models for composition dependence will start with the simplest cases and
gradually introduce more complex features of real phases.

Phases with fixed composition

A phase with fixed composition can be a pure element, a stoichiometric compound, or a
solution phase whose composition is kept constant externally. The Gibbs energy of such
a phase can depend on temperature and pressure only. An important class of such phases
is constituted by the “end members” of solutions, a term introduced at the beginning of
this chapter.

Temperature dependence

Except for the ferromagnetic transition, described in section 5.4.2, the temperature depen-
dence of the molar Gibbs energy, G,,, of a stable end member of a phase 0 is often
described by a power series in temperature like

G&—ZbiHiSER:ao—i—a]T—l—alen(T)+a3T2+a4T_]+a5T3+~--, T,<T<T, (52)

where b, is the stoichiometric factor of element i in 6 and Y°, b, H>*® represents the sum of
the enthalpies of the elements in their reference states, usually the stable state at 298.15 K
and 1 bar, denoted SER. This term is needed because there is no absolute value of the
enthalpy of a system and one must select some reference state. Such a power series can
be valid for a limited temperature region only, here delimited by 7} and 7,.
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The coefficients in Eq. (5.2) expressing the temperature dependence of the end-member
parameter cannot be related directly to any other thermodynamic quantity, but, using the
relations in Eqgs. (2.12), one obtains

HY =Y bH'™ = ay—a,T —a,T* +2a,T"" —2asT° - - (5.3)
i

S = —a, —a,(1+In(T)) —2a,T 4+ a,T> —3asT*--- (5.4)

C) = —a,—2a;T —2a,T™> —6asT" - -- (5.5)

From the expression for the heat capacity, C,, it can be seen that the coefficient
for the T In(T) term in Eq. (5.2) originates from the temperature-independent heat-
capacity coefficient. These quantities for pure Cu, from Dinsdale (1991), are plotted in
Fig. 5.1.

The expression above is suitable for expressing the Gibbs energy for a limited temper-
ature range and above the Debye temperature. If the coefficients are fitted to experimental
data and the expression is then used far outside the known temperature range, or down to
0K, severe problems with using this power series will occur. Thus there is an interest in
developing and using temperature-dependent models based on the physical properties of
the phase, namely lattice vibrations, thermal vacancies etc. At present, however, physical
models are rarely used for modeling the heat capacity except for a model for ferromag-
netic transitions described below. The lower temperature limit is usually 298.15 K, which
is sufficiently low to allow calculations of the equilibrium in most heterogeneous sys-
tems that require diffusion in order to reach the equilibrium state. At lower temperatures
diffusion is usually not possible and thus there is little practical interest in extending the
model to lower temperatures.
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Figure 5.1 The thermodynamic properties of pure Cu: in (a) the heat capacity and in (b) the
Gibbs energy (G), enthalpy (H) and entropy (multiplied by 7 and with changed sign). Note that
G is continuous at the melting point but H and S have jumps.
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Equation (5.2) may require many coefficients if the temperature range is large.
A method by which to decrease the number of coefficients is to use several temper-
ature ranges and different expressions in each. This method is also needed in order
to have backward compatibility with the time when thermodynamic data were usually
described by giving the heat of formation and entropy at 298.15K and 1 bar together
with a four-coefficient heat-capacity expression. In such cases there were usually at
least two and often up to four or five temperature regions with different coefficients.
Note that it is mandatory that the first and second derivatives of the Gibbs energy
must be continuous through such a breakpoint, otherwise it would behave like a phase
transition.

Pressure dependence

The pressure-dependent properties such as volume and thermal expansivity are often
ignored in thermodynamic models. For condensed phases they are important for the
equilibrium only at very high pressures, but the molar volume can be important in phase
transformations and knowledge of it is necessary in order to obtain the volume fraction
of a phase. For the gas phase, except close to the critical point or the boiling point,
it is sufficient to describe the pressure dependence by one term, RT In(p/p,). For the
condensed phases a model suggested by Murnaghan (1944) is useful for limited pressure
ranges.

The Murnaghan pressure model

In the Murnaghan model one assumes that the bulk modulus can be expressed by a linear
pressure dependence. The following expression is used for the compressibility, k, which
is the inverse of the bulk modulus:

Ko(T)

1+nK,(T)p (56)

k(T,p) =

where K,(T) is the compressibility at zero pressure and 7 is a constant independent of
temperature and pressure. Experimentally n is found to be about 4 for many phases. The
thermal expansivity can usually be described as a power series in temperature and, in order
to have reasonable extrapolations from low temperatures, at which most measurements
are made, to high temperatures, one should use an expression of the form

a=ayta; T+a, T+ (5.7)

and avoid higher powers than one. This model was used in an assessment of pure iron
by Fernandez Guillermet and Gustafson (1984) and Fig. 5.2(a) shows the phase diagram
for iron for varying temperatures and pressures. In Fig. 5.2(b) the pressure axis has been
changed to the molar volumes.
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Figure 5.2 Two variants of the phase diagram for pure Fe: (a) the p—T phase diagram and
(b) the volume—temperature phase diagram. In (b) there is a gap in the fce/bee curves at high
volume because the pressure is below zero there.

For solution-phase modeling the Murnaghan model must be integrated into a Gibbs
energy and the expression is

Voef2€8 a(T)dT

m[(l +nKy(T)p)' =" —1] (5.8)

Gn(T,p) =G, (T, p=0)+

For high pressure, such as at the center of the Earth, the Murnaghan model is not
sufficient and one must use higher-order terms. In most high-pressure models the volume
is then used as independent variable, but in such a case it is no longer a model for the
Gibbs energy.

A new pressure model

A new pressure-dependent model was proposed by Lu ef al. (2005) because the compo-
sition dependences of the parameters in the Murnaghan model, V;, a, K,, and n, make it
very cumbersome to handle when calculating partial Gibbs energies. This model is based
on the empirical relation proposed by Grover et al. (1973):

T

VT p) = V() - e 220 ) (59)
(T, p)

where V,(T) and k,(T') are the volume and compressibility at zero pressure and c(T) is

an adjustable function. This can be integrated to give a surprisingly simple Gibbs-energy

expression:

G,(T.p) =G, (T.p=0)+ :0((TT)) [exp(V(T’ ’?(;)VO(T)) - 1] (5.10)
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The expression for the volume as a function of temperature and pressure is more
complicated and involves the exponential integral, Ei, defined as

—X

Ei(z)=/°° ¢ dx .11)
z X
(T, p) = ¢(T)Ei™" [E1< ZO((TT))> + pKO(T)eXp( ZO((TT)) )] (5.12)

where Ei~" is the inverse of the exponential integral.

The advantage of this model is that one can include more easily the composition
dependences of the parameters and it is thus better suited for modeling solution phases.
Another advantage is that the model can be extended to higher pressure ranges than can
the Murnaghan model.

Metastable states, lattice stabilities, and end members

When a new component can dissolve in a compound, it forms a solution phase and the
stability range of the phase can be extended also in temperature. A consequence of this is
that the Gibbs energy of the solution phase must have a value at the endpoint representing
the compound also at temperatures outside its range of stability. Thus experimental data
are not always enough to fit coefficients in the temperature models even for compounds.
An example of such extrapolation is shown in Fig. 5.3, where the heat capacity and Gibbs
energy of various forms of pure iron (Ferndndez Guillermet and Gustafson 1984) have
been extrapolated from 298.15 to 2000 K.

In other cases the Gibbs energies of compounds that are never stable are needed. These
may be inaccessible to measurement, but it may be possible to predict properties of such a
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Figure 5.3 Thermodynamic data for pure Fe. (a) The heat capacities for the various phases of pure
Fe. The data are extrapolated also outside the stable range of the phases. (b) The Gibbs energies
for some other forms of pure iron relative to bce iron extrapolated over a large temperature range.
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compound by extrapolations or by ab initio calculations. With some care the results from
total-energy calculations can be used as “experiments” together with real experimental
data with the thermodynamic models described here.

Most elements have only one or two stable crystal structures, but they may have some
solubility in many different phases. When the solubility is large, it is necessary to estimate
a value of the relative stability of the metastable structure as an “end member” of the
phase. These values for pure elements are called “lattice stabilities.” Several estimates of
such unary data have been made. Those currently most used are the comprehensive SGTE
set published by Dinsdale (1991). The Ringberg meetings (Aldinger et al. 1995, 1997)
may lead to a completely new set with improved models. It is important to agree on the
values for these metastable states, even if they are very uncertain, because one cannot
change the value of the Gibbs energy of formation of a stable or metastable end-member
state without reassessing all parts of the thermodynamic database that depend on the
previous value. This problem is not so big for structures stable in some range of T and p
because their thermodynamic properties can be determined by measurements and thus
one can always refer to experimental data, but for metastable states there are estimates
that may differ by a factor of ten or more.

For compounds with no measured heat capacity it is usual to apply the Kopp—Neumann
rule (Grimvall, 1999) that the heat capacity of the compound is equal to the stoichiometric
average of the heat capacities of the pure elements in their SER. The Gibbs energy will
then be

G! =Y bG*R =ay+a,T (5.13)

In comparison with Eq. (5.2), there are only two coefficients that have to be determined
from experimental data because the heat capacity will be taken from the descriptions of
the pure elements. If there are special reasons, for example the coordination number for
a lattice site, one may refer an element to some phase other than the SER. The same
equation is also applied to the end members used for modeling solution phases that have
a composition within the composition range of the phase.

The main contribution to the heat capacity of a solution is due to the temperature
dependences of the “end members” of solutions. Most other model parameters used to
describe the properties of solutions are only linearly temperature-dependent; at most a
T In(T) term is used to describe a composition-dependent excess heat capacity, but any
higher power of T is discouraged except for the “end members.”

At the Ringberg meetings a new way to perform the extrapolation above and below
the liquidus temperature for the pure elements has been proposed (Agren et al. 1995); in
particular, by including the glass transition. This will not be treated further here, since it
has not yet been implemented in the software generally used for assessments.

Extrapolations of the Gibbs energy of the liquid below the melting temperature and
of the Gibbs energy for the solid phases above the melting temperature are necessary
when one considers solution phases. The SGTE group (Dinsdale 1991) has introduced
breakpoints in the Gibbs energy at the melting temperature of the liquid and the stable
solid phase. This usually works well for phase-equilibria calculations but sometimes gives
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strange results for calculated thermodynamic functions. Several other suggestions have
been made for extrapolations, but most of them can be treated with the series expression
above.

Variables for composition dependence

The Gibbs energy, G, of a phase depends on the amounts of the constituents in the phase.
For modeling the composition dependence it is more convenient to use the molar Gibbs
energy, G,,, defined in Eq. (2.14) and give the size of the system as the total amount of
components, N, which is the sum of moles of all components N;:

G=N-G, (5.14)

N = YN, (5.15)

In this chapter “Gibbs energy” will be used to mean “molar Gibbs energy,” except
when clearly noted otherwise. The composition variables describing the composition
dependence of G,, are in the simplest case the mole fractions of the components, x;,
defined as

X =— (5.16)

The composition is sometimes expressed in mass fractions (often wrongly called weight
fractions) and it is defined as

M;
w, = —

=2 (5.17)

where M, is the mass of component i and M = )", M,. The mole or mass percent is the
respective fraction multiplied by 100.

For a closed system the amounts of the various components of a system are “external”
variables that can be controlled from outside the system. In each phase in the system the
components may form many different species or ions and enter as constituents various
types of sites in a crystalline phase.

The “composition” of a phase in a system at equilibrium is the amounts or fractions of
all components in the phase. This can be expressed using the mole fractions or the mass
fractions defined above.

Components other than the elements

The number of components for a system is always equal to the number of elements,
but one may prefer to use components other than the elements. For example, in an
oxide system (Ca, Mg, O) one may prefer to use (CaO, MgO, O,) as components if the
composition is entirely inside the binary system (CaO, MgO). This case will be discussed
in more detail in the section on quasibinary systems (section 6.2.4.5).
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At equilibrium the chemical potential of a component j is related to the chemical
potentials of the elements i by the reaction

M :Zbij,“«j (5.18)
j

where b;; is the stoichiometric factor of component i in constituent j and w; is the
chemical potential of constituent j.

An example of the use of this relation is if one wants to know the chemical potential
of H,O in a gas with the components H, and O,. The equation above gives

Hu,0 = My, +0.510, (5.19)

This can be related to the classical “law of mass action” if one assumes that the gas is
ideal, see section 5.5.4, because then one has for each molecule

Mo, = °Go, +RT In(y,,)

°Gy, + RT In(yy,) (5.20)

Mu,

Mo = ‘Guyo+RT 1n(yH20)

where y; is the equilibrium constituent fraction of each molecule i in the gas. Inserting
Eq. (5.20) into Eq. (5.19) and rearranging the terms gives

*Gyyo — Gy, —0.5°Go, = K = RT 1n<%> (5.21)
YH,0
where K is the reaction constant for the chemical reaction H,O = H, 4+ 0.50,.
The reference state for the chemical potential of H,O is not well defined unless one
compares it with the chemical potential of a gas consisting of pure H,O, uy, o. In that
case it can be related to the partial pressure of H,O, py,o, by

MH,0 — Mf{zo )

i (5.22)

Pu,0 = exp(

Another example can be taken from the use of the sublattice model introduced in

section 5.8, where, for example, carbon dissolves interstitially in fcc iron, which is

modeled with two sublattices (Fe)(C, Va), where Va represents vacant interstitial sites.

The chemical potential of C cannot be obtained directly from the model, but one has the
following relations for the partial Gibbs energies of the end members for fcc iron:

fee _
GFe:Va - GFc

Grec = Gre+Go (5.23)

On taking the difference between these partial Gibbs energies, one obtains for the
chemical potential of C

Me=Gc= G;Ceczc - GfFCeC:Va (5:24)
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Some care should be taken when selecting components other than the elements, since
it might not be possible to define a convenient reference state for the chemical potential
or activity. As reference state one may use only a phase that can exist in pure form for
the selected component. If solely the equilibrium state is interesting, one can ignore such
problems, but one may find that the amount of the phase or the fraction of a component
of a phase may be negative if the phase has a composition outside the composition range
limited by the components defined by the user.

Internal degrees of freedom

In many cases a phase can have “internal” degrees of freedom that cannot be controlled
externally. For example, the speciation of a gas phase at equilibrium is determined by
the Gibbs energies of formation of the various gas species. A typical example is a gas
formed by the elements H and O. In this gas one may at equilibrium expect to find the
constituents H, H,, H,0, O, O,, and O;. For convenience one may also use H, and H,O
as components rather than the elements.

Sometimes a gas is formed by mixing various amounts of particular species, but, when
the equilibrium has been established, new species may have formed and the equilibrium
fractions of the initial species may be very different from the initial values. In a liquid or
crystalline solid there may also be a formation of species and ions on different types of
sites or different types of defects. These must be taken into account when modeling the
phase and the fractions of these constituents can be obtained only from an equilibrium
calculation.

The constituent fraction

The species that constitute the phase are called the “constituents.” For a gas with several
species the constituent fraction, y;, of each species i in the gas describes the internal
equilibrium in the gas. In a crystalline phase with several sublattices the constituent
fraction is often called the “site fraction.” The sum of the constituent fractions is unity
(on each sublattice) and the mole fractions of the components can be calculated from the
constituent fractions by using

2,byy;

X == (5.25)
2k Zj bkjyj

where b;; are the same stoichiometric factors as in Eq. (5.18). If there are more constituents
than components one cannot obtain the constituent fractions from the mole fractions
without a minimization of the Gibbs energy of the phase.

For the gas phase the partial pressure is often used to describe its composition. For an
ideal gas, Dalton’s law can be applied and the partial pressure for a constituent i, p;, and
the constituent fraction, y;, are related by the total pressure, p, by

Pi=p-Yi (5.26)
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For phases with sublattices the constituent fractions, or site fractions, are defined as

()
. N,
(s) _ i
where Nl-(s) is the number of sites occupied by the constituent i on sublattice s and N'®
is the total number of sites on sublattice s. If some sites are empty, it is convenient to
define a vacancy fraction

g N3, NY
Wi=——E= =1y, (5.28)
NGO .
i#Va

The vacancy, denoted Va, can be treated as a real component that always has its
chemical potential equal to zero. This is a structural or constitutional vacancy, not a
thermal vacancy. It is possible to have thermal vacancies in the models, too, and the
fractions of such vacancies can be fitted by model parameters, but these vacancies will
stabilize the phase and the lattice stability parameter for the crystalline phases has to be
refitted to give the correct melting temperatures.

In this context it can be understood that it is convenient to define the molar Gibbs
energy for a crystalline phase relative to the formula unit of the phase. In particular, if the
phase is modeled with sublattices, which can be wholly or partially empty (i.e., containing
vacancies), the molar Gibbs energy is most simply expressed per mole formula unit of
the phase rather than per mole of real components.

The formula unit of a phase with sublattices is equal to the sum of the site ratios,
Y. a", where the ratios @ usually are the set of smallest integers giving the correct
ratio between the numbers of sites N on each sublattice. It is recommended to use
Cu,Mg rather than Cu ¢466667 M8 3333333 also in order to avoid rounding-off errors.

The mole fraction of the component i can be calculated from the site fractions of a
crystalline phase as

by
O SUD VL (5.29)

s a® 2k j by j)’f)

where b;; has the same meaning as above. The vacancies must be excluded from the
summations.

Volume fractions of constituents

If the constituents have very different sizes, some may represent chain molecules with
thousands of atoms whereas others have maybe only a few atoms; this must be taken into
account when considering the entropy of mixing. It is common to use volume fractions in
such systems, but the volume is not a very good independent variable since it depends on
temperature. Instead the volume of a constituent should be used directly in the model and
the composition determined in terms of the constituent fraction of the species as defined
above. An example is given by the Flory—Huggins model described in section 5.9.6.
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Other fraction variables

For gases partial pressures have already been mentioned above. In aqueous solutions one
frequently uses the molality as the fraction in the modeling. The molality of an aqueous
species i is the number of moles of i per kilogram of solvent and it can be directly
transformed to the constituent fraction of i.

Modeling particular physical phenomena

Several diverse physical phenomena may contribute to the thermodynamic properties of
a phase. In some cases such contributions do not depend smoothly on the composition,
but rather depend on some property that may itself vary with composition, for example
the Curie temperature for ferromagnetic transitions. It is then advantageous to model
these contributions separately even for the pure elements, and to model the composition
dependence of the Curie temperature and similar properties as separate quantities. This
introduces an “implicit” composition dependence into the Gibbs energy, which may make
the equilibrium calculations more complicated but brings the modeling closer to reality.

Lattice vibrations

The contribution to the Gibbs energy due to lattice vibrations above 300K is usually
close to that given by the Dulong—Petit rule, 3RT. As already mentioned, it is not the
intention here to describe models that can be extrapolated to temperatures below 298 K,
but it may in some cases be important to describe the Debye temperature of a phase
because that is related to other properties. A possible method to apply in order to include
this was proposed at the Ringberg workshop (Chase et al. 1995). This method has still
not been implemented in most software and will not be discussed further here.

A ferromagnetic transition model

Some elements and compounds undergo second-order transitions, which can be due
to magnetic ordering or other internal changes without a change in composition. The
classification of a second-order transition is that there is a discontinuity in the second
derivative of the Gibbs energy at the transition whereas all first derivatives, such as entropy
and enthalpy, are continuous. A first-order transition means that there is a discontinuity in
the first derivative. At the magnetic-transition temperature the heat capacity approaches
infinity and it would be impossible to represent the heat capacity in the vicinity of the
critical point using Eq. (5.2) without using many coefficients or possibly also temperature
intervals. As an example of this, the heat capacity of pure iron was shown in Fig. 5.3(a).
In such a case it is recommended that the contribution to the Gibbs energy due to the
second-order transition in bcc be modeled separately. An additional reason is that the
magnetic contribution to G in an alloy with iron is not proportional to the fraction of
iron because the ferromagnetic transition is composition-dependent.
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Equation (5.2) can, then, be considered to be valid for a hypothetical element or
compound that does not undergo a second-order transition. For modeling a second-order
transition it is necessary to start with its contribution to the heat capacity of the system. For
the contribution to the heat capacity due to a magnetic transition the following empirical
expressions have been proposed by Inden (1981):

1+7

fm __ p-fm

Cl'=K ln(1_73) T<l1 (5.30)
41

C};"‘:K"‘“ln( < 1) T>1 (5.31)
5

where the superscript fm denotes the ferromagnetic state below the Curie temperature 7
and pm the paramagnetic state above T; 7 is T/T and T is the absolute temperature.
The two coefficients K are general functions for all magnetic transitions and can be
determined by integrating the heat capacities as follows:

1 =)
mag ff — / ™ (dr+ [ o (rydr (5.32)
0 1

The total magnetic contribution to the molar entropy is set equal to —R In(1+ B),
where 3 is the mean magnetic moment measured in Bohr magnetons. This is equivalent
to assuming that the magnetic entropy is due to the disordering of localized spins with
average magnitude equal to 3. The magnetic contribution to the Gibbs energy, ™G =
meG — T - ™eS, vanishes at the Curie temperature, giving ™*H = T - ™*®S. The two
contributions to ™*H below and above the Curie temperature may approximately be
attributed to the contributions of long-range order (LRO) and short-range order (SRO),
respectively. The ratio of these two contributions is introduced as an empirical constant,
p, for which Inden found the value 0.28 for cobalt and nickel (fcc) and 0.4 for iron (bcc).

The heat capacities cannot be integrated to give a closed expression for the Gibbs
energy unless it is expanded into a power series. Thus several simplifications of the
model have been proposed and the simplified version of this model due to Hillert and
Jarl (1978) has been used most widely. This gives

mg G — RTF(r)In(B+ 1) (5.33)

where 7 is the number of atoms per formula unit that have the average magnetic moment
B. The function f(7) according to the simplified model is
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- ——+—|-=- —t —+— T<
Al 140p 497\ p 6 135 600
1 /773 7B

£ = e
_ | — JRE— > 1
A<10+315+1500) T=

with

518 11692/1
A= 4 —(-—1
1125 " 15975\ p



54.3

544

5.4 Modeling particular physical phenomena 93

As already mentioned, p depends on the structure. In a solution phase 7 and 3 vary
with the composition. For maximum flexibility and simplicity, they are assumed to vary
with composition in accord with the same models as are applied to the Gibbs energy
itself, as described below. The total Gibbs energy for an element or end member with a
magnetic transition is thus

G = Gohvp 4 GO mae (5.34)

where G%MP is described by Eq. (5.2) and G%™¢ by Eq. (5.33). The large effect of the
ferromagnetic transition in bee Fe is clearly evident from Fig. 5.3(a). When these values
are integrated to give a Gibbs energy, one can obtain the curves in Fig. 5.3(b), which
show the value of the Gibbs energy relative to bcc Fe extrapolated also into the metastable
ranges. These curves are much smoother than the heat capacities, but an effect of the
magnetic transition is the increasing stability of bcc Fe at lower temperatures.

Other physical contributions to the Gibbs energy

The contributions to the Gibbs energy from other physical phenomena, such as the
electronic heat capacity, size mismatch, and short-range order, are usually not modeled
separately. The reason for this is that, although some of these contributions can be
accurately modeled from atomistic theories, the contributions to the Gibbs energy are
in most cases much smaller than other contributions that cannot be modeled accurately.
In a theoretical approach one can treat some contributions accurately but may ignore
others that are equally important. In the Calphad technique the total Gibbs energy is
modeled using experimental data on the phase diagram and thermodynamics to fine-tune
the models to reality.

The composition dependence of physical models

The physical models with composition-dependent physical quantities, such as the Curie
temperature and Bohr magneton number in the model for ferromagnetic transitions, add
to the phase a Gibbs-energy contribution that is “indirectly” composition-dependent.
Usually the composition dependence of the physical quantity is described with the same
composition variables as the Gibbs energy itself.

The magnetic model described in section 5.4.2 has two parameters, T, the critical
temperature for magnetic ordering, and 3, the Bohr magneton number. These can be
composition-dependent in the same way as the parameters describing the chemical part of
the Gibbs energy. Thus each “end member” of a solution can have a critical temperature for
magnetic ordering and a Bohr magneton number. The composition dependences of these
quantities are described using the same mathematical expression as that for the chemical
excess Gibbs energy. Employment of particular models for other physical properties may
be used more in the future.

An example of modeling the critical temperature for magnetic ordering is shown in
Fig. 5.4. Its value for the bcc phase in the Fe—Cr system was assessed by Andersson
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Figure 5.4 The phase diagrams for Fe—Cr and Fe-Ni with the Curie and Néel temperatures of the
bee and fce phases plotted as dashed lines. Note that there is a small kink in the solubility curves
where they are crossed by a magnetic-ordering curve.

and Sundman (1987) and is shown as a dashed line in Fig. 5.4(a). Since Cr is anti-
ferromagnetic, this is modeled with a negative value of the critical temperature and
the curve goes through zero at some Cr content and on the Cr-rich end it represents a
Néel temperature. In Fig. 5.4(b) the critical temperatures for magnetic ordering for both
fcc and bee in Fe-Ni from an assessment by A. T. Dinsdale and T. G. Chart (unpublished
work, 1986) are shown, with the ordered L1, phase added by I. Ansara (unpublished
work, 1995). In the absence of any experimental and theoretical information when this
system was assessed, the Curie temperature for bcc Ni was assumed to be the same as
that for fcc Ni.

Models for the Gibbs energy of solutions

The term “solution” is in some contexts restricted to dilute solutions and “mixtures’ used
more generally, but in this book “solution” is used for all kinds of phases that can vary
in composition.

All phases vary in composition to a greater or lesser extent, but for practical purposes
it may be possible to ignore the compositional variations for some compounds. However,
it is also important to state what the practical purpose is. For example, in electronic
engineering the change in electronic properties of a semiconductor like PbS when its
composition is varied over a small range is essential, but a metallurgist interested in
extracting lead from a PbS ore may safely ignore this.

For solution-phase modeling it is necessary to describe the properties of the pure ele-
ments or compounds that form endpoints of the solutions. In many cases the solution-phase
models will also require properties for compounds that cannot be measured separately.
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For that one needs estimates and models that can predict, for example, the Gibbs energy
of chromium in the fcc state. These problems were discussed in section 5.2.

In order to describe real solutions, it is necessary to model the terms in Eq. (5.1) and,
together with the model parameters, this can be fitted to the experimental properties of
the solution. One may place the emphasis on any one of G, , ™S . or EG , but the
main goal of the presentation in this book is to model the total Gibbs energy of a phase
in such a way that it can be extrapolated to multicomponent systems.

The compound-energy formalism

There are many ways to derive the compound-energy formalism (CEF), but the original
is based on the two-sublattice model formulated by Hillert and Staffanson (1970). This
model was extended to an arbitrary number of sublattices and constituents on each
sublattice by Sundman and Agren (1981). In order to make the mathematics easier, they
introduced the concept of a “constituent array.” A constituent array specifies one or more
constituents on each sublattice and is denoted /, while the individual constituents are
denoted i, sometimes with a superscript (s) to denote the sublattice s. The constituent
arrays can be of different orders and the zeroth order has just one constituent on each
sublattice. Such a constituent array denotes a compound and this is the origin of the name
compound-energy formalism.
The Gibbs-energy expression for the CEF is

MG, =) P (V)G (5.35)
I
NSy =—RY a, Yy In(y") (5.36)
s=1 i=1
EGm:ZP,l(Y)L,l +ZP12(Y)L12+"' (5.37)

I L

where I, is a constituent array of zeroth order specifying one constituent in each sublattice
and P; (Y) is the product of the constituent fractions specified by . °G,  is the compound-
energy parameter representing the Gibbs energy of formation of the compound /. In
many applications of the CEF some constituent arrays I, do not represent any stable
compounds, which means that those °G,; must be estimated in some way.

In the configurational entropy the factor a, is the number of sites on each sublattice
and yfs) is used to denote the constituent fraction of i on sublattice s. The first sum is
over all sublattices and the second over all constituents on each sublattice.

The excess term, EGm, contains sums over the possible interaction parameters defined
by component arrays of the first order, second order etc. A constituent array of first
order has one extra constituent in one sublattice. For the second-order constituent array
it is necessary to include both the case with three interacting constituents on one sub-
lattice and that with two interacting constituents on two different sublattices, i.e. a
reciprocal parameter. The use of constituent arrays of higher than second order is not
advisable.
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The partial Gibbs energy, Eq. (2.15), takes a special form for a phase with sublattices
since it might not, in the general case, be possible to calculate the partial Gibbs energy for
the components unless all constituents enter in all sublattices. Nonetheless, one can always
calculate the partial Gibbs energy for a constituent array of zeroth order I, as follows:

(S) 6G

(5.38)

R

where the first sum is taken over the constituents i defined by the constituent array (one
in each sublattice) and the second sum is over all constituents in all sublattices.

The relation between the compound and cluster energies

The CEF was developed for phases in which there are different types of atoms on the
sublattices and different numbers of nearest neighbors in the sublattices, for example
interstitial solutions, carbides, and intermetallic phases like the o phase. More recently it
has also been used to describe order—disorder transformations in phases with the structure
type B2 (CuZn) and L1, (Ni;Al) which are ordered forms of the A2 and Al structure
types, respectively. In such cases there are relations between the parameters in the CEF
that must be respected in order to describe the physical properties of the phase.

The basic concept of the CEF is that each compound or “end member” has its own
independent Gibbs energy of formation. This Gibbs energy is a function of temperature
and pressure but independent of composition. One may compare this with a CVM treat-
ment in which the “cluster energies” may appear to be similar to the compound energies,
but they depend on the composition, or volume. However, one may expand the com-
position dependence of the cluster energy in the cluster fractions and obtain a separate
end-member energy and an excess energy contribution. It is also possible to replace the
configurational-entropy expression (5.36) by, for example, a quasi-chemical model or a
tetrahedron CVM model, but, as long as the compound energies depend only on 7" and
p, this should still be considered as a variant of the CEF.

It is not uncommon that there are no experimental data for many of the compounds
or “end members.” In some cases the end members are purely fictitious, in particular
when the end members are charged, like in oxides. In those cases the concept of “bond
energies” may be useful and the energy of such a compound may be estimated as the
sum of the energies of bonds between the atoms in the compound.

Another technique to estimate the Gibbs energy of metastable end members in the
CEF is to assume that an element in a sublattice with a coordination number of 12, or
smaller, will contribute the same Gibbs energy as that element has in the fcc lattice. In a
sublattice with coordination number 14 or higher it will contribute the same Gibbs energy
as in a bec lattice, since the second-nearest neighbors in a bcec lattice are not much further
away than the nearest neighbors. This has frequently been used in the modeling of many
phases, for example the o phase. For example, a ternary end-member parameter can be
estimated as

oGge:MozNi = IOOG;C&:C + 4°Gk1</i§ + 160GkI:IC1C (539)
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For models of ordered phases there are usually many possible ordered compounds, but
only a few that are stable and can be measured. It is possible to calculate by ab initio
techniques the energies of ordered compounds, which is very useful, in particular
for obtaining good extrapolations of the ordered phases to higher-order systems; see
section 3.3.3. It is possible using the Connolly—Williams cluster-expansion method
(Connolly and Williams 1983), or by “disordered” ab initio calculations, to obtain esti-
mates of the enthalpies of a disordered phase (Abrikosov et al. 1996). Even with very
good ab initio data, it is still very important to have experimental data to compare them
with since some effects, such as magnetism, may cause deviations between the results of
ab initio calculations and the reality.

The reference state for the Gibbs energy

There is no absolute value for the Gibbs energy, so it is necessary to refer the Gibbs
energy in all phases to the same reference point for each element. Thus in Eq. (5.35) and
in the following the notation °GY means the Gibbs energy of formation of the constituent
array [ in 6 from the reference states of the elements included in the constituents and is
a function of temperature and pressure,

°G] =Y byH™ = f(T, p) (5.40)
I

g=ry

where b;; is the stoichiometry factor for the component j in the constituent array / and
H?™ is the enthalpy of the component j in its reference state, which is normally the
stable state for the component at 298.15 K and 1 bar. This reference state will normally
be omitted from the equations below, but, when calculating chemical potentials, it is
important to know what the reference state for each component is.

The ideal-substitutional-solution model

An ideal substitutional solution means a solution of non-interacting constituents mixing
randomly with each other. A special case of this is when the constituents are the same as
the components. The Gibbs energy is then

Gn=>_x°G;+RTY x;In(x;) (5.41)

i=1 i=1

Usually, however, the concept of an ideal model is extended also to the case when
there are constituents other than the components, for example the ideal gas, which usually
has many more constituents than components. The model above should then be called
the simple ideal-substitutional-solution model. The Gibbs energy of this model is

G, = ZyioGi+RTZyiln(yi) (5.42)

i=1 i=1
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In this case the constituent fractions, y;, defined in section 5.3.3, are used rather than
the mole fractions, x;, because there can be more constituents than components and
because the mole fractions defined in section 5.3 are defined only for the components.

In the rest of the book, the term ideal model will mean a model in which the excess
Gibbs energy, EG,,, is zero. This means that its Gibbs energy depends only on the end
members and that the entropy of mixing of the constituents is random. The physical
contributions are included in the ideal model.

The gas phase

The phase most often described as an ideal substitutional model is the gas phase, which
usually has many more constituents than components. For example, a model for gas with
the components O and H should include at least the six constituents H, H,, H,O, O, O,,
and Oj:

G5 = vy °Gy +yu, Gy, +Yu,0 CGu,yo + Yo Go + Yo, ‘Go, + Yo, *Go,

+RT[yyIn(yy) + Yu, 1n(yH2) + Y0 ln()’Hzo) +yolIn(yo) + Yo, ]n(yoz) + Yo, 1n(y03)]
(5.43)

The sum of the constituent fractions is unity. If there are more constituents than
components, there are internal degrees of freedom in the phase and one can obtain the
values of the constituent fractions only by minimizing the Gibbs energy for the current
set of conditions.

Comparing Eq. (5.42) with the general form of the Gibbs energy, Eq. (5.1), gives

MG =Y v,°G; (5.44)
i=1
S =—RY_y;In(y,) (5:45)
i=1
EG,=0 (5.46)
PG =0 (5.47)

The °G; parameters can, at least in principle, be determined separately for each con-
stituent i, and thus there are no adjustable parameters in the ideal-substitutional-solution
model which describes the properties of the solution. For a gas phase the constituents
are molecules or ions and their °G; values can usually be calculated accurately from the
vibrational and rotational modes of the molecule (Allendorf 2006).

It is interesting to note that it would require a very complicated excess Gibbs energy
to describe the gas mentioned above with H and O using a simple ideal model based on
the mixing of the atoms H and O. It is thus important to select a good “ideal” model
in order to have a simple excess Gibbs energy. The shape of the Gibbs energy versus
composition curve for a binary simple ideal substitutional solution is given in Fig. 5.5(a).
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Figure 5.5 Gibbs-energy curves for ideal solutions. (a) The Gibbs energy for a simple ideal
binary substitutional model divided by RT. Note that the slopes at each endpoint are infinite.

(b) The Gibbs energies divided by RT for an ideal gas with the components H and O at various
temperatures (500, 1000, 1500, 2000, and 3000 K) including all possible molecules (i.e.
constituents) that can form. In (a) there are only A and B as constituents; in (b) there are several
constituents. The strong “V” shape at low temperature is due to the formation of the molecule
H,O. At high temperature the gas becomes more like a monatomic ideal solution with H and O as
major constituents.

The total Gibbs energy of one mole of “formula units” of the gas phase is

G =Yy, [Gg — Y bH™ +RT ln(yi):| +RT ln<p%> (5.48)
i J

Equation (5.48) is an alternative formulation of the law of mass action. The constituent
fractions y; are the ratios of the partial pressure p,; of species i to the total pressure p,
Yi = pi/p-

The parameters °G" cannot be measured calorimetrically with good accuracy.
A quantum-mechanical calculation, using spectroscopic measurements, is much more
accurate. This type of calculation is outside the scope of this book. The “standard pressure”
Po by convention is set to 10° Pa.

It has already been stated above that the gas phase usually has more constituents than
components, i.e., there are stable molecules and thus internal degrees of freedom. It is
interesting for the discussion of the model later to show how the Gibbs energy for a gas
phase with the elements H and O depends on the composition for some temperatures.
This is shown in Fig. 5.5(b). At low temperature the gas is either H, and H,O or O, and
H,O because the Gibbs energy of formation of H,O is very strong.

Non-ideal gases are often described in terms of a Helmholtz energy rather than a Gibbs
energy, i.e., using 7 and V as variables instead of 7" and p. The reason for this choice is
that the critical point for the gas—liquid transition is usually important for non-ideal gases,
i.e., the gas and the liquid should have the same Helmholtz energy function. The transition



100

556

557

Models for the Gibbs energy

cannot be described with a Gibbs-energy function because it represents a miscibility gap
in the volume of the phase. Non-ideal gases are sometimes modeled using the fugacity;
the fugacity f; of a gas constituent i is simply related to the activity by the reference

pressure p, as
Ji = poa; (5:49)

and this can be modeled with the excess parameters introduced below.

Ideal phases with special features

Many features are associated with an ideal phase, i.e., a phase with non-interacting
constituents. The definition above in Eq. (5.42) means that a phase treated with the ideal
substititional model may exhibit a number of “non-ideal” features because there can be
more constituents than components. For example, the activity versus composition curve
for an ideal phase is often assumed to be a straight line, but that is certainly not true for
a gas with H and O, as discussed above.

Even without the formation of stable species with two or more different components
in the gas, one can have “non-ideal” shapes of the activity curves; see Fig. 6.7 later for
an example. The curve depends on what is selected as components, but the components
selected for a system should take into account all phases, not just the gas phase.

In models discussed later one will find that there are miscibility gaps even in “ideal
systems,” i.e., systems with non-interacting constituents.

The origin of non-ideal behavior of solutions

Systems with non-interacting constituents for which the surroundings of a constituent
are irrelevant can be described by ideal models. In an ideal solution the bond between
two unlike constituents, for example atoms in a lattice, is equal to that between two
identical constituents. The simplest way to introduce a non-ideal behavior of solutions is
to introduce the energy difference for these different bonds as

€;=E;—05(E;+E;) (5.50)

If €; is negative it means that unlike constituents prefer to be together, i.e., long-
and short-range order or clustering. If €;; is positive, there is a tendency toward phase
separation and formation of a miscibility gap because the constituents prefer to surround
themselves with constituents of the same kind.

Ejj, and Eij can be iden-

tified, like electronic, vibrational, and configurational. In the present treatment, however,

In a theoretical approach various physical contributions to E;;,
all contributions, except those that are modeled as separate physical contributions to the
Gibbs energy (such as the magnetic contribution above), are included in the thermody-
namic treatment as a value of €;; and are modeled together.

In crystalline solids the number of bonds is fixed, but in a liquid phase the constituents
have no fixed environment and the number of nearest neighbors can vary. In many aspects
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the liquid is more similar to a gas than it is to a crystalline solid, but in all real liquids
there is an interaction energy between the constituents that will create non-ideal behavior.

The substitutional-regular-solution model

In a crystalline phase the atoms have well-defined positions in a unit cell that can be
repeated indefinitely in all directions. In a substitutional solution the constituents have the
same probability of occupying any site in the unit cell and the Gibbs energy is given by

G, =Y %°G;+RT> x;In(x;) +5G,, (5.51)

i=1 i=1

Since the probability is equal to the mole fraction, on limiting the excess Gibbs energy
to binary interaction, we have

EG, = ZZx,-ij,-j (5.52)
i i
b4
L;= 26 (5.53)

where z is the number of bonds and e is related to the bond energies by Eq. (5.50). The
substitutional model is frequently used for metallic solutions, both liquids and crystalline
solids, in which all the constituents mix on the same sites.

A phase may have crystallographically different sublattices and these may have dif-
ferent numbers of nearest neighbors and the constituents may prefer different sublattices.
This is a form of long-range order (LRO) and must be included in the modeling, as will
be described in section 5.8.

The models based on the CEF do not include any explicit short-range-order (SRO)
contribution. The reason for this is that a proper treatment of SRO requires the introduction
of clusters, which makes the numerical solution of the equilibrium too complicated for
practical applications in multicomponent materials. Another reason is that, for many
important materials like steels and aluminum alloys, the contribution to the Gibbs energy
due to SRO is very small. Even for alloys in which SRO is significant, for example
Ni-based superalloys, the SRO contribution can be approximated in the excess Gibbs
energy; see section 5.8.4.5.

It is mainly for the liquid phase that models that take SRO into account are more
frequently used also in thermodynamic databases. For the liquid the pair model, like the
quasi-chemical model described in section 5.7.2.1, or the associated model described in
section 5.7.1, is usually sufficient.

For crystalline phases the CVM developed by Kikuchi (1951) has been used with
the techniques described in this book for an assessment of the Au—Cu system (Sundman
et al. 1999). A simple case of approximating SRO in the disordered state is described in
section 5.7.2.2.
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Dilute solutions, Henry’s and Raoult’s laws

In the very dilute range all phases have the property that the activity of each of the
constituents varies linearly with the fraction of the constituent. This is usually called
“Henry’s law” and all models described here obey this. In some cases, when the solubility
range does not exceed the range within which the activity is linear, it can be convenient to
model the phase with just one parameter describing this slope. Such an activity coefficient
or “Henrian” parameter, y;, for the solute i can be written

a; = exp(%) = 'ylf’xi (5.54)

This model is useful for cases in which several dilute solutes in a single solvent phase
are considered, for example aqueous solutions, because a single parameter is needed and
simple software can be used. For the solvent “Raoult’s law” is assumed, meaning that

ay = x, (5.55)

For a case with several solvents, or the same solvent in both liquid and solid states,
one must keep in mind that y; does not describe any property of pure i but only of i
together with the solvent in a specific state. In such cases it is usually simpler to use
a model that relates the properties of the pure solute i in the same state as the solvent,
i.e., to use a model describing the complete composition range from solvent to solute.
This requires an estimation of the Gibbs energy of the solute in a metastable state and
such estimates are usually available from the SGTE (Dinsdale 1991). The assessment
of an interaction parameter to describe the slope in the dilute range is then identical to
assessing a value of y?.

Raoult’s law applies to the solvent in a dilute solution, stating that the activity of
the solvent is equal to the fraction of the solvent when the solute is dilute. All models
described here obey this.

Before the advent of computers, several models useful for thermodynamic calculations
using just pen and paper were developed. One of them that is still popular is the dilute-
solution model of Wagner (1952). In this model an additional coefficient is introduced
into Eq. (5.54) for the chemical potential of the solvent i,

i/ (RT) =In(y; x;) + x;€;, (5.56)

This equation is convenient for calculations using pen and paper but should never be
used in computer calculations, since this model is inconsistent because it violates the
Gibbs—Duhem relation, except in the trivial case of a binary solution.

One can compare it with the chemical potential calculated from the substitutional-
regular-solution model, assuming that there are no interactions between the solutes:

B =°G;+RT In(x;) + (1 —2x;, +x})L,; (5.57)
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The difference is the squared term of x; in Eq. (5.57), without which chemical potentials
described by Eq. (5.56) cannot be added to form an integral Gibbs energy

G =D il (5.58)

except for the trivial binary case.
For very dilute solutions the fraction of solvent, x?, can be set to zero in Eq. (5.57) and
the sum of the terms °G, + L,; is equivalent to RT In(y;) and Ly, is equal to 0.5RTe;.
Darken improved this model by introducing his quadratic formula (Darken, 1967).
Since large amounts of data have been obtained using the € model, in particular for the
liquid phase, it can be interesting to note that both Pelton (Pelton and Bale 1986) and
Hillert (1986) have developed methods by which to convert ¢ and € to a regular-solution

model. If the solvent is denoted as “1,” the partial Gibbs energies of the solutes “;” are,
using Hillert’s method,

n
G;=°G;+M;+L,;+RT In(x;)+ Y (Ly;—L;;—Lyy)x;
k=2

n n

+0.5% > (L + Ly = Ly)xx, (5.59)
k=2 1=

where the L parameters are the interaction parameters in a substitutional regular solution,
Eq. (5.52). The °G; is the reference state for pure j in this phase and M is a modification of
this reference state when “17 is a solvent. The relations connecting M;, the L parameters,
and the € parameters are

L,;/(RT) =—0.5¢;
L;/(RT) = €;— (€;; +€x) (5.60)
M;/(RT) = vj +e€,

With the last formula one may use the € parameters in a regular-solution model. Note

that, even converted to a regular solution, the model is limited to the dilute range of all
the solutes j in Eq. (5.59) due to M;.

Models for the excess Gibbs energy

The excess Gibbs energy is the Gibbs energy that is “in excess” of what can be described
by *G,,, S, and PG, . The binary, ternary, and higher-order interactions in the
excess Gibbs energy will be described separately. All interactions will be written for
a multicomponent system in order to avoid using special features that are valid in a
lower-order system only:

total Gm — srme + physGm _ Tcnme + EGm (561)
EGm — tolale _sif Gm __phys Gm + Tcnme

:bin.EGm+tern.EGm+high.EGm (562)
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Note that the excess Gibbs energy includes all contributions not included in the ideal
part, i.e., excess vibrational, excess configurational, etc.

The Gibbs energy of mixing

One should not confuse the excess Gibbs energy and the Gibbs energy of mixing. The
Gibbs energy of mixing is defined as

"G =Gn— > x;,°G; (5.63)

where the summation i is for all components of the system. The total Gibbs energy of
mixing, ™*G,,, is the difference between the Gibbs energy of the phase and that of a
mechanical mixture of the components. The excess Gibbs energy, G, in Eq. (5.1), is a
modeling quantity and equal to the difference between the Gibbs energy of the real phase
and that of whatever ideal model that has been selected.

The binary excess contribution to multicomponent systems

The basic form of the binary excess-Gibbs-energy contributions to a multicomponent
substitutional solution is

n—1

EGL =Y Y xxLy (5.64)

i=1 j=i+1

This equation is a sum over binary interactions in all i—j systems. Note that the mole
fraction of each constituent is used, i.e., there is no assumption that x; +x;, = 1, since
that is true only for the binary subsystem. The same equation can be used to describe the
binary excess contribution for each sublattice of a phase. The constituent fractions of the
multicomponent system should then be used in Eq. (5.64).

There are several ways to justify type of binary interaction parameter from a physical
point of view, for example by invoking the difference in bond energy between like and
unlike atoms in Eq. (5.50). If the number of nearest neighbors is z, then L,; = (z/2)€;;.
If the regular-solution parameter L,; is a temperature-independent constant, the model is
called strictly regular.

There are many extensions of this model including temperature and compo-
sition dependences and considering interactions between constituents on different
sublattices.

In Fig. 5.6 the effect of the regular-solution parameter (in units of Jmol™') on the
phase diagram for a binary system is shown. The system has only two phases, liquid
and solid. In each row the liquid has the same regular-solution parameter, 420000 in
the first row, +10000 in the second, O in the third, and —10000 in the last row. The
solid has a regular-solution parameter equal to 420000, +10000, and O in the first
and second rows, and +10000, 0, and —10000 in the third and fourth rows. With a
negative regular-solution parameter one can expect ordering, so a tentative second-order
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Figure 5.6 Phase diagrams for binary
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systems with differing values (in units of Jmol™") of the
regular-solution parameter. In the first row the interaction is 420000 for the liquid and 420000,
410000, and 0, respectively, for the solid. In the second row the interaction is +10000 for the
liquid and 420000, +10000, and 0, respectively, for the solid. In the third row the interaction is
0 for the liquid and 410000, 0, and —10000, respectively, for the solid. In the fourth row the
interaction is —10000 for the liquid and +10000, 0, and —10000, respectively, for the solid. The
dotted curves in diagrams (i) and (1) represent a possible second-order ordering transition.
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transition line is indicated by a dotted line. The ordering has been assumed to be of
A2/B2 type.

In Fig. 5.7 the Gibbs-energy curves for the liquid and solid phases are plotted for three
different temperatures for the case when the interaction parameter is —10000J mol~" for
the liquid and +10000Jmol~" for the solid. At 800K the liquid is stable except at the
limits and the Gibbs-energy curve for the solid phase is very flat but has no inflexion
points. At 500K the Gibbs-energy curve for the solid phase has a maximum and two
minima, but the miscibility gap is metastable since the liquid phase is stable in the middle
of the diagram. At 400K the miscibility gap in the solid phase dominates the phase
diagram and the liquid is no longer stable.

In the assessment of real systems one should expect to obtain interaction energies
approximately of the same order of magnitude in all phases modeled with a regular-
solution model. The reason for this is that the regular-solution parameter depends on the
difference in bond energies as given by Eq. (5.50), which remains approximately the
same independently of the structure of the phase.
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Figure 5.7 Gibbs-energy curves for the phase diagram in Fig. 5.6(j) at three different
temperatures, (a) 800, (b) 500, and (c) 400 K.
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Figure 5.8 The Gibbs energy (a) and the enthalpy (b) of mixing at 400K for the values of the
regular-solution parameter used to calculate the phase diagrams in Fig. 5.6. The dotted curves
represent a metastable extrapolation without ordering for the case with negative interaction.
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Figure 5.9 Phase diagrams with a compound A,B for varying interaction parameters in the liquid
and solid phases; the compound has the same Gibbs energy in all three diagrams. The interaction
parameter in the liquid is +10000Jmol ™' in the left and middle diagrams and —10000Jmol~" in
the diagram on the right. The solid-phase interaction parameter is +20000J mol~" in the diagram
on the left and +10000Jmol ™! in the other two. In the phase diagram the compound melts
congruently in the diagram on the left, has a solid decomposition in the diagram in the middle,
and undergoes peritectic melting in the diagram on the right.

In Fig. 5.8(a) the Gibbs energy of mixing and in Fig. 5.8(b) the enthalpy of mixing
for the solid phase at 400 K are shown for some values of the regular-solution parameter.
The dotted line indicates the metastable disordered phase for the case with negative
regular-solution parameter.

In most binary systems there are also intermetallic phases, but, if these are ignored,
the general shape of the phase diagram should be close to one of those plotted. In Fig. 5.9
three phase diagrams with a compound are shown. It shows that the type of transformation
for the compound in the phase diagram depends on the parameters of all phases; it is not
a property of the compound.

The Redlich—Kister binary excess model

Equation (5.64) gives just a single interaction parameter for the phase in the binary i—j
system and that is often not enough to describe the available experimental data. One may
extend the binary regular-solution term in the composition by using differences between
the fractions of i and j:

k
L= > (x —x;))" "Ly (5.65)

v=0

This form of the composition dependence for a binary interaction was first suggested by
Guggenheim (1937). It was recommended for use in modeling multicomponent systems
by Redlich and Kister (1948) and is generally known as a Redlich—Kister (RK) power
series. It is evident that, for a binary system, this equation can be written in many different
forms using the relation x, = 1 — x,. Other well-known expressions for the composition
dependence are Legendre polynomials, and those of Margules, Borelius, etc. However, the
form given above is recommended for use in multicomponent systems since it preserves
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the shape of the excess Gibbs energy of the binary system in the multicomponent system
and only the magnitude decreases with decreasing x; + x;.

The curves in Fig. 5.10 may help the reader to understand the contributions of
the various terms in an RK series to the excess Gibbs energy. Note that the regular-
solution term is the only one that has a non-zero value in the middle of the system.
The contributions from the odd coefficients change sign in the middle whereas the
contributions from the even coefficients have the same sign throughout the whole sys-
tem. All curves are calculated for the same value of the parameter, 20 000J mol~!. The
magnitude of the curves decreases because the difference in fractions is raised to a
higher power.

For reasons discussed later, one should avoid using many coefficients in an RK
series. There should be a special reason for using more than the first three. The special
name “subregular-solution model” is sometimes used when just two RK coefficients are
employed, and “subsubregular” indicates using three.

The order of i and j is important in the RK series, since the sign of the coefficients
depends on it. Various types of software may use different ways to denote the order.

A single positive regular-solution parameter will always give a symmetrical miscibility
gap, thus at least two RK coefficients are needed in order to have an asymmetrical
miscibility gap.

Enthalpy (kJ mol™1)

0 0.2 0.4 0.6 0.8 1.0
Mole fraction B

Figure 5.10 The contributions to the enthalpy of mixing for the first five terms in the RK power
series. The 3L curve is dashed and that for *L is dotted to make them easier to identify.
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It is quite common that a phase is stable only within a narrow composition range. This
is usually modeled with sublattices with various types of defects based on crystallographic
and other experimental information. However, the model usually covers a much larger
composition range than the stability range of the phase. It may be tempting to limit the
composition range by using many RK coefficients, but one must be aware of the effect
of these coefficients also outside the stability range of the phase. In particular, one may
have serious problems when extrapolating a binary system with many RK coefficients
to a ternary or higher-order system because the phase may then appear at quite different
composition ranges, where the higher-order binary RK coefficients do not give a reason-
able description. This is further described in chapter 6 on assessment methodology and
in case studies in chapter 9.

The parameters "L, ; in the RK series can, of course, be temperature-dependent. Nor-
mally a linear temperature dependence is enough and only when heat-capacity data are
available may one use more:

"Lij="a;+"b;T (5.66)

The composition dependence of the excess enthalpy is described by “a;; and the excess
entropy by “b;;. If measured excess-heat-capacity data are available, then and only then
may one introduce a higher-order temperature dependence into the RK coefficients. The
next higher term after the linearly temperature-dependent one should be a 7 In(T) term
to represent a constant excess heat capacity.

The Redlich—Kister power series is useful only when the excess enthalpy is a smooth
function of the constitution like for the Cu-Ni system in Fig. 5.11 from Jansson (1987).
When the enthalpy varies rapidly, like in the Mg-Sn system shown in Fig. 5.16(b) later,
some other modeling feature must be used.
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Figure 5.11 1In (a) the phase diagram for Cu-Ni is shown. The temperature for the ferromagnetic
transition for Ni (dashed line) makes the miscibility gap skewed. In (b) the enthalpy of mixing in
the fcc phase is shown. The enthalpy curve is rather smooth and two RK coefficients were
sufficient.
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Other binary excess parameter models

The Redlich—Kister series is the recommended excess model because it is symmetrical and
thus extrapolates well to ternary and higher-order systems. There are many other excess
models for binary systems, such as the simple polynomial, Lagrange series, etc., some of
which may also be modified to be symmetrical series. In a binary system one may always
convert from any series to another, but the ternary extrapolations will depend on the
series used, as well as on the extrapolation method; see section 5.6.6. Combining several
different binary excess series and different extrapolation methods makes it very difficult
to understand the behavior of a multicomponent system; therefore, it is not advisable.

Two versions of a phase diagram assessed without
thermochemical data

One may find published assessments using little or no thermodynamic data. Such assess-
ments should be considered with great skepticism, since it is quite easy to describe the
same phase diagram with quite different values of the thermodynamic data. See for exam-
ple the two phase diagrams in Fig. 5.12. The diagrams are very similar but the phase
boundaries represent only differences between the Gibbs energies of the phases and thus
the enthalpy curves from the two assessments are very different, as shown in Fig. 5.13.

The difference in the assessment is that in (a) an ordered model with sublattices has
been used for the intermetallic phase, whereas in (b) the intermetallic compound has been
assumed to be a substitutional model. In (a) the ordering has been assumed to be strong
at the equiatomic composition, but a large deviation from stoichiometry has been allowed
using anti-site atoms. In (b) the phases have been modeled with excess parameters as
small as possible.
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Figure 5.12 Two calculated phase diagrams fitted to the same experimental data on the phase
diagram but without any thermochemical data. Different models were used for the intermediate
phase. The difference between the two phase diagrams is very small.
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Figure 5.13 1In (a) and (b) the enthalpy of mixing for all phases has been calculated for the two
phase diagrams in Fig. 5.12 using ordered and disordered models, respectively. As can be seen the
enthalpy curve for the intermetallic compound in (a) is much more negative and has a pronounced
“V”-shape. The activity curves calculated at 600K for the two assessments are shown in (c) (the
full line is for the ordered model (a); the dotted line is for the disordered model (b)) and there are
significant differences.

There are hardly any differences between the phase diagrams in Fig. 5.12 and, if there
are no thermochemical measurements or crystallographic information about the type and
degree of ordering, there is no way of knowing which assessment is correct.

The sharp increase in activity at x(B) = 0.5 from the ordered model is shown in
Fig. 5.13(c) (full line). It is due to the ordering and cannot be reproduced in the dashed
curve from the assessment in which the intermetallic compound was treated as a sub-
stitutional solution. The diagrams show the simple relation between a sharp “V”’-shaped
enthalpy curve and a strong increase of the chemical potential at the same composition.

The extrapolations into a ternary system from these two different assessments will
behave very differently. Thus ternary data are often a useful complement to binary
assessments with no or little data.

The ternary excess contributions

The excess ternary interaction contribution requires one more summation:

n—2 n—1 n
MEGL =2 > Y xixxLi (5.67)
i=1 j=i+1k=j+1

In some cases one would require that the ternary interaction parameter is also
composition-dependent and, as in the binary case, several methods have been suggested
as ways to handle this. However, in order to provide a symmetrical extension into higher-
order systems, Hillert (1980) suggested the following type of composition dependence in
the ternary excess parameter:

Lij =v;- iLi.ik +v; "/Li_/k + 'kLijk (5.68)
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where

v=x+1—x—x;—x)/3
v =x;+(1—x;,—x;—x)/3 (5.69)

v =x+(1—x,—x; —x,)/3

The advantage of introducing the v, fractions is that their sum will always be unity,
even in a multicomponent system. The ternary parameter will thus behave symmetrically
when extrapolated to higher-order systems. If all 'L, j« are the same then that is identical
to having a composition-independent ternary parameter. A composition-independent term
in Eq. (5.68) is thus redundant.

A composition-independent ternary term would have its largest contribution where the
three fractions are as large as possible, i.e., in the middle of the constitutional triangle.
From Eq. (5.68) it is evident that the 'L;; will have its largest contribution toward the
corner for pure i.

Before introducing ternary or higher-order interactions, one should consider modi-
fication of the binary systems if the extrapolation to a higher-order system exhibits a
significant difference from the experimental information. Since the experimental infor-
mation is usually scarce and uncertain, it is possible to obtain equivalent descriptions of a
binary system. The binary descriptions will have different extrapolations to higher-order
systems and often ternary information is crucial for obtaining a valid binary description.

Higher-order excess contributions
As for binary and ternary interactions, more summations can be added:

n=3 n=2 n—1 n

WehEG 53 Y Y X2, Ljeg + - (5.70)

i=1 j=it1k=j+1I=k+1

Few quaternary or higher-order parameters have been evaluated, but they would fit
into Eq. (5.70). It has not been necessary to consider composition dependences of these
parameters because there are not enough experimental data and, if there are discrepancies
in higher-order systems, one can normally correct this by reassessment of the lower-order
systems.

Extrapolation methods for binary excess models

In the derivation of the excess contributions to the Gibbs energy in Eq. (5.62) a multi-
component system considering the contribution from each of the binary, ternary, and
higher-order terms was used. In the equations one should use the fraction of each con-
stituent from the multicomponent system. One must not replace the fraction of one
constituent with one minus the sum of the rest, since that would affect the contribution
to higher-order systems. This is the simplest method of adding contributions from many
lower-order systems together and is not related to a particular solution model. However,
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several methods for how to add together contributions from binary systems have been
proposed on the basis of geometrical reasoning.

It may be important to point out that the choice of extrapolation model is important
only for higher-order parameters in a Redlich—Kister series. The composition-independent
regular parameter will extrapolate in the same way independently of the extrapolation
model.

The method used in Eq. (5.62) above has been derived in a geometrical way also and
is called the Muggianu method (Muggianu ef al. 1975). Alternative methods have been
suggested by Kohler (1960), Colinet (1967), and Toop (1965). The Kohler and Colinet
methods are symmetrical like the Muggianu method and treat the contributions from the
three binary systems in the same way, but refer the contributions from the binaries to
different compositions along the binary side as shown in Fig. 5.14.

The Toop method treats one of the three elements differently, but, if the other two
elements become identical, they reproduce the binary A-B = A-C systems in each ver-
tical section through the A corner. These two features, (a) symmetrical treatment of
all elements and (b) reproducing the binary systems if two elements “become” identi-
cal, cannot be combined, except in the case of composition-independent regular solu-
tions in all three binaries. The differences among the methods are usually small. The
Muggianu method has the easiest formulation, starting from the RK formalism, and thus
is preferable.

The Toop method is used when one of the constituents behaves very differently from
the others. For example, when mixing carbon or oxygen with two metals, it may be
tempting to use the Toop method since it treats the contribution from one of the binaries
differently from those from the other two. This method thus requires that constituents be
classified into different groups, which can be done with small databases, but there is no
obvious way to do this for a general database.

Pelton (2001) has devised an ingenious method to classify Toop elements for each
ternary and to combine this with other ternary extrapolation models in a multicomponent
system. This can become very complicated, so it is not recommended unless all other
methods to handle the asymmetry of a ternary system have been exhausted. First one
should try different sets of constituents, taking into account size effects, short-range order,
electronegativity, or charge transfer. There are several other modeling tools that can
handle such effects. One possibility is to add a ternary parameter that can be evaluated

A o 02 04 06 08 10 A o0 02 04 06 08 1.0 A 0 02 04 06 08 1.0 A 0 02 04 06 08 10
Mole fraction B Mole fraction B Mole fraction B Mole fraction B
(a) Muggianu (b) Kohler (c) Colinet (d) Toop

Figure 5.14 Various ternary extrapolation methods presented graphically.
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from the binary excess parameters. Hillert (1980) showed that a Toop model for a ternary
A-B—C system, where C is the “Toop” element and the binary A—C and B—C systems are
modeled as subregular solutions, can be treated with the Muggianu model with a ternary
parameter evaluated from the binary systems

Lygc = 1LAC + 1LBC (5-71)

where 'L, and 'Ly are the subregular-solution parameters for the A~C and B—C systems.

Ternary extrapolation models that can vary from “Kohler type” to “Toop type” depend-
ing on the relative values of binary excess Gibbs energies are not physical and would
give strange extrapolations to higher-order systems.

Modeling using additional constituents

Any solution with a strong tendency toward ordering, i.e., those in which it is energetically
favorable for unlike atoms to be close, will have a characteristic “V”’-shape in its enthalpy
of mixing when the composition varies. This might not be evident from the phase diagram
shown in Fig. 5.15 for the Mg—Sn system from (Fries and Lukas 1993). The published
assessment was later modified using a new description of the hcp phase.

The activity curves will also be affected by the ordering and the activity may change by
several orders of magnitude over a small composition range. At the ordering composition
the configurational entropy will have a minimum. All these effects are shown in Fig. 5.16
for the liquid phase in the Mg—Sn system. The low entropy of mixing and the sharp
increase of the activity occur at the same composition. At higher temperatures the curves
reveal a more regular behavior of the liquid. It should be evident that this type of behavior

1100 1 1 1 1
1000 + liquid -

900 - L
800 - .
700 - L

600 -hcp + Mg,Sn o
500 - =

Temperature (K)

400 + Mg,Sn + bet "

300 ; r : .
A 0 02 04 06 08 10

Mole fraction Sn

Figure 5.15 The phase diagram for Mg—Sn does not indicate that the liquid has any unusual
properties. Only when one has access to thermochemical data does one find, see Fig. 5.16, that
there is a strong short-range ordering in the liquid phase. The existence of the very stable
compound Mg,Sn can be taken as an indication that there may be a tendency for the liquid also to
have strong ordering around the same composition, but there are cases with stable compounds but
no short-range order in the liquid.
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Figure 5.16 The effect of ordering on various thermodynamic properties for the Mg—Sn system:
(a) the Gibbs energy, (b) the enthalpy, (c) the entropy, and (d) the activity. The curves have been
calculated for the temperatures 700, 900, 1100, and 1300 K.

cannot be treated by the excess-Gibbs-energy formalism described in Eq. (5.62), which
describes a smooth change in curvature over the whole composition range.

If the excess Gibbs energy for a substitutional-solution model requires too many
coefficients to describe this behavior, it is preferable to modify the **G, and 'S
terms of Eq. (5.1). For solid phases, one may use crystallographic information to intro-
duce sublattices, as described in the next section. For liquids and for cases in which
sublattices are not possible, one may introduce fictitious constituents, usually called
associates.

Normally, fictitious constituents are used to describe short-range order (SRO), i.e., the
local arrangement of atoms, and the sublattice model to describe long-range order (LRO),
i.e., the atoms form a periodic arrangement over long distances, but there are intermediate
cases for which neither method fully describes the reality.
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The associate-solution model

In systems with SRO, unlike atoms tend to stay together for a shorter or longer length
of time. The term “associate” was introduced to denote an association between unlike
atoms when the attractive forces between the atoms are not strong enough to form a
stable chemical molecule. If a molecule is formed, this should be included unproblem-
atically as a constituent in the solution. Consider, for example, the H-O system plotted
in Fig. 5.5(b), which shows the variation of the Gibbs energy with composition. The
pronounced minimum in the Gibbs energy is due to formation of H,O molecules in the
gas and there is no excess Gibbs energy.

For a system with a similar Gibbs energy or enthalpy versus composition curve to that
of a system with formation of stable molecules, the introduction of a fictitious constituent
may be reasonable. Thus the associate-solution model formally introduces an “associate”
as a constituent in the solution as a modeling tool. The associate may be considered as a
molecule not stable enough to allow its isolation, but having a lifetime still significantly
larger than the mean time between two thermal collisions.

Fictitious constituents, sometimes called “associates’” and sometimes ‘“‘clusters,” can be
used in the same form of the equation for the surface of reference of the Gibbs energy and
the configurational entropy as in Eq. (5.42). In this way one introduces a new constituent
and thus creates an internal degree of freedom. The Gibbs energy of formation of the
new constituent can be used to fit experimental data. An experimentally determined sharp
minimum in the enthalpy curve is mainly described in terms of the enthalpy of formation
of the associate. The stoichiometry of the associate must correspond to the composition
of the minimum. At that composition the constituent fraction of the associate is high and
thus the configurational entropy is low.

The contributions of the surface of reference and the configurational entropy to the
Gibbs-energy expression, Eq. (5.1), for a substitutional associated solution are

Srme = Z yi oC;i (572)
i=1

~RY 3 In(y) (573)

i=1

cnf S
m

where the summation over i is for all constituents. The site fraction y; is used here to denote
that the constituent fractions are not the same as the mole fractions of the components.
The excess Gibbs energy can be modeled in the same way as a substitutional solution, as
described in section 5.6, treating the interaction between each pair of constituents as an
independent parameter. Physical properties such as magnetism can be added as usual.

Non-random configurational entropy

If the interactions between the constituents are large, the random entropy of mixing used
for modeling Eq. (5.42) is not appropriate. If the interactions create a long-range ordering
of the constituents, that can be modeled with sublattices as described in section 5.8. If
the interactions create short-range ordering, its contribution to the Gibbs energy must
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be modeled differently. There is interest in predicting phase diagrams using more or
less complicated, non-ideal, entropy expressions based on the “quasi-chemical” approach
or on the CVM. In these models pairwise bonds between atoms or clusters with three
or more atoms are introduced as fictitious constituents in calculating the entropy by
use of Eq. (2.11). The models include a correction term to give the correct random
configurational entropy when there is no tendency toward SRO.

The quasi-chemical model

Guggenheim proposed a model for chemical SRO called the quasi-chemical model
(Guggenheim 1952). To derive this model, one may start by assuming that the bonds
between A and B atoms, giving molecules AA, BB, and AB, are distributed randomly.
The formation of the bonds is described by a simple chemical-reaction formula that can
be written as a Gibbs energy of reaction for the molecules AA, BB, and AB:

AA+BB = AB+BA (5.74)

As with the associate model, this can be treated by introducing additional “fictitious”
constituents into a substitutional-solution model, in this case both AB and BA. The reason
for having two constituents with the same stoichiometry is due to the fact that they do not
represent free molecules as in the gas or liquid, but bonds in a crystalline solid, where the
orientation of the bond is important. The exchange of an A and a B atom between two
neighboring sites affects the entropy because other bonds are changed by this exchange.

For a phase with the number of bonds per atom equal to z and ignoring the fact that
the bonds should agree on the atom placed at each site, the Gibbs-energy expression for
the “bonds” AA, BB, AB, and BA is

Srme Yaa‘Gaa +Y88°Grp +Yap G ag + Y8a‘Gra (5.75)

Z
_RE [Vaa In(¥aa) + yes In(Vp) +Yap IN(Vap) + Vpa In(¥pa)] (5.76)

cnf S
m

The mass-balance constraints give the mole fractions of A and B as

Xp = Yaa T 0.5(Vap +pa) (5.77)

xg = Y +0.5(Vap +Vpa) (5.78)

In the expression for the surface of reference, °G,z = °Ggy, due to symmetry. If
Yag = Yga there is no LRO and this “degeneracy” in the disordered state, due to its
distinguishing the fractions of y,5 and yg,, gives an additional term R7y,z In2 compared
with the case on ignoring this degeneracy. In the expression for S, the configurational
entropy is overestimated considerably because the number of bonds is z/2 times larger
than the number of atoms per mole and, for the case °G ,; = 0, the entropy should become
identical to that of an ideal solution of the components A and B.

The origin of this overestimate can be understood if z =2 in Eq. (5.76) because it is
then identical to the entropy of a gas phase with AA, BB, BA, and AB. In a gas phase
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the molecules are independent and can rotate freely, but in a crystalline phase the nearest
neighbors to a site must agree what atom is placed in that site. In order to correct for the
overestimation of the entropy in Eq. (5.76), the following modified entropy expression
was suggested by Guggenheim (1952):

: z
S = _R*|:)’AA ln<yATA) + Ypp hl(y%) + Yan ln( Yap >+yBA hl( Yo >]
2 Xi X5 XpAXp XA Xp

— R[x, In(x,) + x5 In(xp)] (5.79)

For the case of no SRO this expression gives the same configurational entropy as a
random mixing of the atoms A and B. This is the final entropy expression according to the
quasi-chemical model and also to the simplest Ising model, but, even with this correction,
Eq. (5.79) is valid only when the degree of SRO is small. If the ordering is strong and
z > 2, one may even have negative values of “™S, from Eq. (5.79); see Fig. 5.17(b) later.

When the SRO is very strong, it can be treated as LRO, which can be described with
the sublattices introduced in section 5.8. A connection between the quasi-chemical model
and the sublattice model is described in section 5.8.4.3.

One can easily verify that Eq. (5.79) is identical to a random-entropy model when
there is no SRO. For this case the constituent fractions can be calculated from the mole
fractions:

2

YAA = Xa
YAB = YBA = XaXB (5.80)
VBB = XZB

On inserting Eq. (5.80) into Eq. (5.79), this becomes identical to an ideal solution in
Eq. (5.41). This is in contrast to the associate model, in which an ideal configurational
entropy of all constituents is assumed and the configurational entropy will never be
identical to that of an ideal solution without the associate.

The cluster-variation method

In the CVM formalism developed by Kikuchi (1951), one introduces clusters with three,
four, and more atoms and, depending on the crystal structure, one can derive corrections
to the entropy expression taking into account the fact that the clusters are not independent.
However, the principle is the same as for the quasi-chemical formalism, namely that
these clusters can be treated as independent constituents with a unique fraction, but, for
the configurational entropy, one must take into account the fact that the clusters share
corners, edges, surfaces, etc. The configurational entropy is different for each different
crystal structure and the CVM configurational entropy for an fcc lattice in the tetrahedron
approximation is given below. For the case in which there is no LRO, there are five
constituents or “clusters,” A, Aj75Bgas. AgsBos. AgasBoss, and B. One may use the
stoichiometry as fraction indices as long as there is no LRO. These five clusters all
represent tetrahedra in the fcc structure and are the end members of the phase. The
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configurational enthalpy is included in their Gibbs energies of formation. Without LRO
the surface of reference is

f _ o o o o o
TGy =ya G+ YAo75Bo.2s GA0.7SBU,25 +yA0vsBo.5 GAUvSBO.S +yA0vszo,75 GA0,2530.75 +y5°Gg (5.81)

The ideal configurational entropy for a system with these constituents is

s = —R[ya ]n()’A)"")’Amslau25 1n(yA0V7SBO_25)
+ YagsBys ln(J’AojBo‘s) + YAg25B0.75 ln()’AoﬁBms) +y5 In(yp)] (5.82)
In a crystal the clusters are not independent, but share edges and corners. They must
thus agree on the type of atom placed in each site and that reduces the configurational
entropy compared with that of an ideal gas. This correction can only be approximate and,
with the CVM tetrahedron approximation, the following expression is used:

CVM.cnf __ nid.enf deg
S, = 2idenlg 4 odeg

+O6R[paaIn(pas) + Pap I(Pag) + Pra In(ppa) + Pps In(Ppp)]
—5R[x,In(x,) + x5 In(xp)] (5.83)

The term %&S_ is due to the fact that the 5 clusters above are degenerate cases of
the 16 clusters needed to describe LRO (4 different A, 5B, ,5, 6 different A, B, s, and
4 different A, 5B 75). This means adding

degSm = _R[(yA0.7sBo.25 +yA0.2530A75)1n(4) +on.5Bo.5 1n(6)] (5'84)
The variable p,, is a pair probability that is equal to the bond fraction in the quasi-

chemical-entropy expression. The values of p,, etc. can be calculated from the cluster
fractions as

1
Yat 05on.7530‘25 + gon.sBo.s

Pan =
1
PaB = PBa = 0'25on_7sBo_25 + gon.sBo.s +0'25yA0.2530.75 (5.85)
1
Pgs = Yt O'Son.zs Boss T gon.s Bos

and the mole fractions from the pair probabilities as

XA = DPaat+Dap (5.86)
Xp = Ppp T Ppa
The equations for p,, etc. are easily understood if one realizes that, in a tetrahedron

cluster, there are six bonds and that in an A ;5B ,5 cluster half of these bonds are between
A atoms, whereas in an A, B, s cluster only one is between A atoms.
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Figure 5.17 Comparisons of the Gibbs energy for tetrahedron CVM and other models using the
same bond energy. T is the critical temperature for long-range ordering at equiatomic
composition. (a) The Gibbs energy for a regular-solution model, associate model, and tetrahedron
CVM model, all using the same nearest-neighbor bond energy at 7/7- = 1.06. (b) Gibbs energy
versus T for a tetrahedron CVM model (full lines) and a four-sublattice CEF model (dashed lines)
at equiatomic composition.

In Fig. 5.17(a) the Gibbs-energy curves for three related models have been calculated
for an A-B system using the same nearest-neighbor bond energy just above the tem-
perature for LRO. One curve is for a substitutional regular-solution model, Eq. (5.64),
with ideal configurational entropy Eq. (5.41); one for an associated-solution model with
five constituents, A, Ay5Bgas. AgsBos, AgasBois, and B, Egs. (5.72) and (5.73); and
one for a CVM tetrahedron model, Egs. (5.81) and (5.83) with the same clusters as the
associates. In the second and third of these models no excess Gibbs energy is used, but
the same constant Gibbs energies are used for the associates or clusters. It is clear that
the associate model overestimates the contribution of SRO to the Gibbs energy.

In Fig. 5.17(b) the Gibbs energies at equiatomic composition for the CVM tetrahedron
model (full lines) and a four-sublattice CEF model (dashed lines) with approximate SRO
contribution according to Eq. (5.151) are plotted versus temperature from O to 1.4 times
the ordering temperature, 7.. The Gibbs energy has been normalized by dividing it by
RT.. The Gibbs energies for these two models are almost identical when there is LRO.
Above T the LRO state is metastable within a short temperature interval both for the
CVM and for the CEF. The metastable state without LRO has been extrapolated all the
way down to 0K for both models. The CVM extrapolation has an unphysical negative
entropy at low temperatures. This means that one must be careful using models like the
modified quasi-chemical model for liquids that cannot undergo a transition to LRO; see
section 5.9.3.1.

In general the cluster energies in the CVM depend on the composition, whereas the
end-member energies used in the CEF have fixed energies representing a phase with
exactly the composition and structure of the end member. In the CEF the dependence on
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composition is modeled with the excess Gibbs energies and this method requires fewer
composition variables than does the CVM. As a comparison, a CVM tetrahedron model
for fcc with eight elements must have at least 8* = 4096 clusters or constituents whereas
a four-sublattice CEF model, which can describe the LRO just as well as CVM can
and with a reasonable SRO approximation, requires only 8 x 4 = 32 constituents. This
means that a CEF model will be several orders of magnitude faster than a CVM model
to implement in three-dimensional software for simulations of phase transformations, for
example.

The excess Gibbs energy with additional constituents

Even with fictitious constituents, Eq. (5.1) can be applied with an excess term given
by Eq. (5.62) and the summations are made including the fictitious constituents. Intro-
ducing a fictitious constituent into a binary substitutional solution allows one to treat
this formally as a ternary system and evaluate binary interactions of all three con-
stituents. From the mathematical point of view, this is not a problem, but of course
the software for calculation of the equilibrium must handle the mass-balance conditions
properly.

A simple case of introducing associates is the model for the Mg—Sn system. The liquid
exhibits a high degree of SRO at the Mg,Sn composition and, in order to describe this,

A 0 0.2 0.4 0.6 0.8 1.0

Constituent fraction Sn

Figure 5.18 The variation of the constituent fractions in liquid Mg,Sn with composition at
temperatures of 700, 900, 1100, and 1300 K. The dotted lines represent two constant amounts of
Sn as indicated.
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one may introduce Mg,Sn as a constituent of the liquid. The terms in the Gibbs-energy
expression will be

ot Gll’:lq = yMg o(;Mg + Ysn oGSn + yMgZSn oGMngn (587)
cnfSE]q = _R[yMg ln(yMg)+ySn ln(ySn)+yMgZSn ln(yMgZSn)] (588)
EGm = yngSnLMg,Sn +yMgZSnySnLMgZSn,Sn +yngMgZSnLMg,MgZSn (589)

The parameter °Gyy,,s, determines the fraction of Mg,Sn in the liquid. There are
three excess interaction parameters that describe each “binary” side of the constitu-
tional triangle shown in Fig. 5.18. In this diagram, which looks like a ternary system,
for the Mg—Sn system, taken from an assessment by Fries and Lukas (1993), the full
lines show how the constitution of the liquid phase varies with composition at several
temperatures. In these cases the parameter Ly, g, is usually zero because the fractions
of Mg and Sn are never high simultaneously. One may include a “ternary” interaction
Litg sn. Mg, 50

Note that the selection of the associate is very important, the model will behave
differently if one selects as a model (Mg, Sn, Mg, 3Sn, 5).

Modeling using sublattices

In crystalline solids it is important to take into account that the atoms may occupy
different types of sublattices with different coordination numbers, bond lengths, etc.
Sublattices represent LRO, which will modify both the entropy expression and the excess
Gibbs energy. The simplest case of a sublattice model would be two sublattices with two
constituents in each. A shorthand notation of this would be

(A’ B))?l (C7 D))l (5 ‘90)

where the subscripts m and n give the ratio of sites on the two sublattices. In a crys-
talline solid m and n are fixed numbers, but one may chose to extract a common factor
determining the size of the formula unit of the phase. It is advisable to use the smallest
possible integer numbers for the site ratios. The constituents A, B, C, and D can represent
atoms, ions, anti-site atoms, vacancies, etc. The most general formalism for describing
thermodynamic properties of phases with two or more sublattices is the CEF, which is
given by Egs. (5.35)—(5.37).

The very simplest case of using two or more sublattices is when there is a single
component on either sublattice. That represents a stoichiometric phase and is not different
from having a single species as constituent. The case of mixing on one sublattice and a
single constituent on the other is identical to mixing species in the substitutional model,
although some care has to be taken about the stoichiometry of the species in order to
obtain a reasonable configurational entropy.
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Reciprocal solutions

A simple case, which cannot be modeled as a substitutional model, is that of a phase with
two sublattices and two constituents on each sublattice. This is known as a reciprocal
system because of the reaction

Aan + BmDn = AmDn + Ban (5'91)
The reciprocal energy represented by this reaction is

AG =°Gpc+Gpp —°Gap — G (5.92)

An example of this type of reaction occurs on mixing the salts NaCl and KBr:
NaCl+ KBr = NaBr 4 KCI (5.93)
In the reciprocal model, just like in the CEF, one assumes ideal configurational entropy
on each sublattice separately and the total entropy is weighted with respect to the number
of sites on each sublattice. The sublattice model thus gives a different behavior of the
configurational entropy from that given by a substitutional model. The first two terms of

Eq. (5.1) will be

ot G = YaY°Gac +YuVb°Gap + Y5 Grc + Y35 °Grp (5.94)

NS = —R{m[y,\In(yy) + v In(yp)] 4+ n[y¢ In(y¢) + 5 In(yp) 1} (5.95)

where y; and y/ are the constituent fractions on sublattices 1 and 2, respectively. The
reference energy expression has four terms representing the possible four compounds
obtainable by combining the constituents on the two sublattices. The Gibbs energy of
formation of these compounds °G,; is multiplied by the fractions of one constituent from
each sublattice. Note that a colon is used to separate constituents on different sublattices
in the parameter expression. For clarity, two constituents on the same sublattice will
sometimes be separated by a comma.

The configurational entropy is calculated from Eq. (2.11) assuming random mixing
on each sublattice and multiplying this by the site ratios. The excess term, £G,,, will be
discussed in the next section. Already without any excess terms, i.e., an ideal reciprocal
model, there are some specific features.

In Fig. 5.19(a) the constitutional square is shown and the four corner compounds are
indicated. If the reciprocal model is used for a binary system, the constituents on the
two sublattices can be the components, species or ions formed by the components or
vacancies. The Wagner—Schottky model described in section 5.8.2.3 is one of the most
important examples of the use of this model. Many examples of the application of the
two-sublattice model will be described in other sections.

For the reciprocal model one may be able to calculate partial Gibbs energies not for
the components but only for end members as defined in section 5.5.1. For a model with
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Figure 5.19 Diagrams for reciprocal systems. (a) The constitutional square for a reciprocal
system (A,B)(C,D). The lower left corner represents the compound AC, the upper right the
compound BD. (b) The reciprocal miscibility gap in a system (A,B)(C,D). The dotted curve
represents the miscibility gap without any excess parameters; the full line, which actually has five
miscibility gaps, represents the stable phase diagram with the reciprocal parameter according to
Eq. (5.102) added.

the Gibbs energy given by Egs. (5.94) and (5.95), the partial Gibbs energy for the end
member AD can be calculated using Eq. (5.38),

Gap =Gap+(1—¥a)(1—y5)AG+mRT In(y,) +nRT In(y} (5.96)

where AG is the reciprocal energy according to Eq. (5.92).

Excess Gibbs energy for the reciprocal solution

In the reference energy term there are already two fractions, one from each sublattice,
multiplied by the parameter for formation of the compound. In the excess parameter one
will thus start with three fractions multiplied by each other, two from one sublattice and
one from the other. Additionally there is a reciprocal excess parameter that is multiplied
by all four fractions:

aswi A/ VA4

EG = ypyaYeLase +YaYYpLapn + YAYYDLaco + YaYeypLecp + YayaYeypLagep  (5.97)

There are two “binary” interaction parameters for each sublattice depending on the
constituent on the other sublattice and these are related to the four sides of the constitu-
tional square in Fig. 5.19(a). The reciprocal parameter will have its largest influence in
the center of the square. In Fig. 5.26 in the section 5.9.4 the surface of reference for a
reciprocal system is shown.
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The binary interaction parameters can be expanded in an RK formula, Eq. (5.65), in
terms of the two fractions from the same sublattice, for example

Lagc = 2 (VA —¥8)" "Lagc (5.98)
r=0

It may also be necessary in some cases to use a composition dependence for the
reciprocal parameter. The following expression has been adopted:

Lag.cp ="Lapco+ a —¥8) - ' Lagep + 06 —5) - *Lag.cp (5.99)

So far no more than two composition-dependent terms have been used and it is
recommended that one try to do without any composition dependence.

For the models with more sublattices, the excess Gibbs energy is expanded in the same
way as for the reciprocal system. With three or more sublattices, however, the excess
Gibbs energy is less important since the major part of the Gibbs energy is described by
the parameters in the surface of reference, °G,.

The reciprocal miscibility gap

The reciprocal sublattice model has an inherent tendency to form a miscibility gap in the
middle of the system. When the reciprocal Gibbs energy, AG in Eq. (5.92), is sufficiently
large this will create a phase separation with the tie-lines parallel to the diagonal and
with the largest energy difference between the corner compounds. This miscibility gap
can appear without any excess parameters and it cannot be suppressed completely even
by adding excess parameters. Even the reciprocal parameter might not suppress the
miscibility gap, but may just separate it into two smaller ones.

When there are experimental data on the Gibbs energies of the corner compounds, the
appearance of the miscibility gap is usually predicted reasonably well by the reciprocal
model with no or small excess energy. However, if one or two of the corners represent
metastable or purely fictitious compounds that must be estimated, it is often difficult to
control the appearance of this miscibility gap.

When there are no data for an end member of a reciprocal solution, it is often useful
to estimate using the assumption that the AG in Eq. (5.92) is zero, i.e., the end member
(A:C) representing a fictitious compound can be estimated by

‘Gac ="Gap+Gp.c —°Gpp (5.100)

In this way one can avoid problems with reciprocal miscibility gaps. If several end
members are fictitious and cannot be estimated in any other way, one should start by
estimating the one which is most significant. One should also take care about compound
energies that might not be specific to a particular system. In particular, the parameters
for compounds with some sublattices filled with vacancies may be part of other systems
and it is then important to estimate the values of such parameters by incorporating all
available information, just as when determining the lattice stabilities for the elements.
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To avoid the presence of a reciprocal miscibility gap, Hillert suggested the use of a
special reciprocal parameter,

EGm = /Ya¥YcYoLa p:cp (5.101)

This can completely suppress the miscibility gap and can be added to the normal
excess Gibbs energy, for the expression Eq. (5.97). Since there is no physical reason for
this composition dependence, it must be considered as a curve-fitting parameter.

The reciprocal miscibility gap is often decreased by short-range ordering in the system.
It is possible to derive an approximation to this contribution, as was first done by Pelton
and Blander (1986) for molten salts. It was later extended to solid phases by Sundman
et al. (1998). The reciprocal parameter is expressed as a function of the reciprocal energy,
AG in Eq. (5.92), as

2
Lagcp= —ZAR% (5.102)

The factor z is the number of nearest neighbors. This parameter has also been used
successfully by Frisk er al. (2001) for modeling carbides and nitrides, for which many
end members are not stable and their Gibbs energies thus must be estimated.

In Fig. 5.19(b) the reciprocal miscibility gap in a phase modeled as (A, B)(C, D) is
shown as a dotted line. This miscibility gap is calculated with a AG parameter according
to Eq. (5.92) only and no excess parameters. Adding a reciprocal parameter according to
Eq. (5.102) changes the miscibility gap into five different ones, which are shown by the
full lines.

Models using two sublattices

In this section we consider a number of models that can be described with the two-
sublattice CEF. When there are several constituents in each sublattice, one can write the
model

(A,B,...),(UV,...), (5.103)

In some cases the same constituent can be on both sublattices; in others the constituents
are different. The Gibbs energy for this model is

Gn=>Y_ Zy,/.y}mG,-:j PG4 RT(m > yin(y) +n Zy}’ ln(y}’)> +EG,, (5.104)
] i j

Interstitial solutions

A common application of the two-sublattice model is to interstitial solutions of carbon
or nitrogen in metals. Owing to the difference in size, these elements prefer to occupy
the interstitial sites in the metallic sublattices. In the austenite phase with fcc lattice the
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interstitial sites form an interwoven fcc lattice and the structure type for Fe with C is
thus B1.

The main characteristic of an interstitial solution is that one of the constituents in
Eq. (5.103) is the vacancy. This was already introduced in Eq. (5.28) and the vacancy can
be treated just like any other “real” constitent if its chemical potential is always equal to
zero, and it is excluded from the summation to calculate the mole fractions, Eq. (5.29).

Some carbides, nitrides, and borides have the B1 structure (TiC, VN, etc.) and they
can be treated with the same model as austenite, i.e., the fcc phase. A model for Bl as
both metal and carbon—nitride-boride phases in a multicomponent steel is

(Fe,Cr,Ni, Ti,...),(Va, C, N, B), (5.105)

In Thermo-Calc two “composition sets” of the fcc phase can be used if both the
metallic phase (with mainly vacancies in the interstitial sublattice) and the carbide are
stable in the same system. Usually the carbide is the second composition set, but, after a
calculation, one may have to list the compositions of the phases in order to know which
composition set is metallic or carbide.

Models for phases involving metals and non-metals

Many phases involving a metallic element and a non-metal like carbon, nitrogen, or
oxygen are modeled with one sublattice for the metallic elements and another for the
non-metal. Some examples are the cubic carbo-nitride mentioned above, and the M,C,
carbide. In some cases there is more than one crystallographically different sublattice for
the metallic element, but there are normally not enough experimental data to describe
this. One case for which two metallic sublattices have been used is for the M,;C, carbide,

(Cr, Fe, ... )y(Cr, Fe, Mo, W, ... );(C), (5.106)

In the model above one has used the experimental information that some of the
elements do not enter all sublattices, in this example Mo and W. Even if there is a third
sublattice with just carbon, this is in principle a two-sublattice model because there is
mixing on only two sublattices.

An interesting case is the spinel phase. In this case the constituents must be treated as
ions:

(Fe*", Fe*™), (Fe*", Fe’™, Va),(0*7), (5.107)

There are additional constraints when a phase has charged constituents. This model
will be discussed further in section 6.2.5.8.

The Wagner—Schottky defect model

The Wagner—Schottky model (Wagner and Schottky 1930) describes the variation of the
Gibbs energy of formation of a compound within a small composition range as a function
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of various types of defects. The model contains only three parameters, the Gibbs energy
of formation of the ideal compound and the Gibbs energies of formation of two defects,
allowing a deviation from stoichiometry on both sides of the ideal composition. This
model can be described in the CEF as a reciprocal model with four end members. If the
ideal constituents are called A and B and the defects X and Y, the model will be

(A, X),(B,Y), (5.108)

where a and b are the stoichiometry ratios. The defects can be

(1) anti-site atoms, i.e., B atoms on the sublattice for A and A atoms on the sublattice
for B;

(2) vacancies;

(3) interstitials; or

(4) a mixture of the above defects.

If interstitial defects are important, one must in CEF add a sublattice for these and
specify how many sites there are in this interstitial sublattice and that the normal con-
stituent on the interstitial sublattice is the vacancy. For example, if the main type of defect
is that both A and B prefer to appear as interstitials on the same interstitial sublattice,
one has the model

(A),(B),(Va, A, B), (5.109)

The crystal structure for the phase provides additional information. For example,
in some compounds with the B2 structure type, i.e., ordered bcc with two identical
sublattices, one often has anti-site atoms on one side of the ideal composition and
vacancies on the other. This means that it is tempting to use a model of the form

(A,B)(B, Va), (5.110)

but the two sublattices are crystallographically identical, which means that, if the atoms in
the two sublattices are interchanged, the crystal is still the same and the ideal compound
can equally well be written BA as AB. For this reason one must include all defects on
both sublattices; allowing both anti-site atoms and vacancies the model should be

(A, B, Va),(B, A, Va), (5.111)

One should take into account that B2 is an ordered form of the bcc lattice. The recom-
mended model for B2 is discussed further in section 5.8.2.4.

The Wagner—Schottky defect model considers only one defect for each sublattice and
three parameters are needed, the energy of formation of the compound and the energy
needed to create a defect on either sublattice. On comparing this with a reciprocal CEF
model like Eq. (5.104), the energy of formation is equal to the °G ,.; parameter, the energy
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needed to create defects on the first sublattice is related to the °Gy.z parameter, and the
energy needed to create defects on the second sublattice is related to °G .y.
The mathematical identification of the Wagner—Schottky model with the CEF leads to

‘Gap = OGA[,Bb (5.112)
o o b o
Gay = °Gas, + arb A°Guy (5.113)
o o a o
Gxp = GAaB,, + m A°Gyp (5.114)
°G =°G + b A°Gyy+ A°G
XY = VAB, Ty AY T ) X:B
= Goy+°Gxp—"Gas (5.115)

where °G, 5,, A°G,.y, and A°Gy g are the parameters of the WS model
° X Ao Y o
Gy = GAaB,, + n A°Gyp+ n A°Gpy (5.116)

where ny is the number of X on A sites, ny is the number of Y on B sites, and n is the
total number of sites considered.

The parameter °Gy.y from the CEF represents a phase consisting only of defects,
which should be very unstable. Equation (5.115) relating this parameter and the other end
members is equivalent to setting the reciprocal energy, Eq. (5.92), to zero.

On combining assessments of the same phase from different systems in a database, one
may find that the parameter °Gy.g occurs in several systems, not just in the A—B system.
It is thus necessary to agree on a recommendation for the value of °Gy.g, similarly to
what was done for the metastable states of the pure elements; see section 5.2.3.

When the values of °Gy.; are fixed, one has to use the excess parameters to describe
the properties of the individual binaries. It is illustrative to show how to determine which
parameters in the CEF are most important. This is done below for the case in which the
defects are anti-site atoms on both sublattices, i.e.,

(A,B),(B,A), (5.117)

The differential of the Gibbs energy with respect to any variation of the site fractions can
be calculated from the partial Gibbs energies, Eq. (5.38):

G
dG =Y —" dy, (5.118)
i ay i
This differential should be zero at equilibrium and, for a fixed composition, the relations
between the dy; are
dyy, = —dyg
dyy, = —dyg (5.119)

ady’,

—bdy,
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This gives the following equation for the equilibrium fraction of defects in the single-phase
region:

G, G 9G 9G
m_ w2 0m O (5.120)

dyy, Ay b dyx b Iy

The Gibbs-energy expression from Eq. (5.104) with five parameters in the excess
Gibbs energy is

/1o,

Srme = )’;\yx GAA+yAy£3°GAB+yByA GBA+yByB Ggs (5.121)
RT {a[y, In(yy) + y5 In(yp)] + b[yx In(yX) + ¥ In(vp) I} (5.122)

"G, = YiysXLaga+Y5Lass) + YAy VaLaas +YaLleas) FYAVsYavelapas  (5.123)

cnf S
m

6,9

As usual a colon “:” is used to separate constituents in different sublattices and for clarity
a comma “,” has been used between interacting constituents in the same sublattices, but
that will normally be suppressed.

The parameter °G .5 is the Gibbs energy of formation of the ideal compound A B,;
°G . 18 the Gibbs energy of formation of pure A with the same structure as A B,, i.e.,
all B sites filled with anti-site atoms. The parameter °Gy is the equivalent for pure B
and the parameter °Gy., is the Gibbs energy of formation of the compound consisting
entirely of defects; its value will be discussed further below. As mentioned above, °G 4.,
and °Gy. should not be used to fit this phase in the binary A-B system because they
may occur for the same phase in other binary or ternary systems.

Inserting the Gibbs-energy expressions into Eq. (5.120) gives, after simplification,

' / i
RTlIl(y',AyB) = (y*A - yA)OGA:A - (y*B >°GB BT ( + yA)OGA:B
YA a b a b b

VA

YAy Y8 )e YAYs  YBYA , YaVA
- G + Lag
<a b) BA ( b2 ab ab ) ABiA

YaYs | YBYE  YaVh
+ + - Ly
( b ab  ab ) *PB

YAYE _ YAYE |, YaYa YAYE _ YBYE |, YBYA
L, Ly
+< a? ab + ab ) AAB ( a? ab + ab ) B:AB

1 1 1 1
VAV | = — = — 7 7 )LaBas (5.124)
ayy ayg byyx byy) "7

The Wagner—Schottky model is applicable when the fraction of defects is very small
and the defects are non-interacting. At the ideal composition with no defects, one has

Va=w = 1

Yo=yl =0 (5.125)
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and inserting this into the right-hand side of Eq. (5.124) (and the first equation also in
the logarithm) gives

1 1 1

I / 1 1 0, 0, l o,
RT In(y,yg) = (; + Z) Gag— b Gan— 7 Gg — ELA,B:B - %LA:A,B (5.126)

For very small defect fractions, their product can thus be expressed by the following
equation:

"

YaYs = exp(

(a+b)°Gpp—aGyp—bGpp— Lygs—Laas ) (5.127)

abRT

In the case in which °G,., and °Gy. formally are unary parameters, which are already
defined in the database, the parameters L, g and L., g can be used for adjustment to the
defect fractions. These two parameters are equally important at the ideal composition, but
L, g will be most important for deviations toward B and L, ., g Will be most important
for deviations toward A. Note that the parameter °Gy., does not appear in Eq. (5.127)
because the fractions by which it is multiplied were set to zero. Even when interaction
parameters are used, it is commonly restricted by Eq. (5.115).

The other two interaction parameters, L, g, and Ly 5, are for one sublattice filled
with defects and are not significant close to the ideal stoichiometry. It is recommended
that they are set equal to the former two:

Lyga = Lapp = Lap~ (5.128)

LB;B,A = LA:A,B = L*:B,A

which is equivalent to assuming that the interaction on each sublattice is independent
of the occupation of the other sublattice. Equation (5.128) is just an estimate to prevent
selection of arbitrary numbers and to keep insignificant parameters within suitable ranges.

If the defect fractions are larger, one may use other parameters in the Gibbs-energy
expression, as a first step by expanding the interaction parameters using RK coefficients,
Eq. (5.98). In fact, the CEF is not restricted to the dilute range; as has already been
described, it can be extended to a sublattice full of defects.

A model for B2 ordering of bee

The B2 ordering of the A2 structure type means that the atom in the center of the unit
cell is different from those at the corners, see Fig. 5.20. A typical phase diagram with B2
ordering is that for Fe—Si or Cu—Zn from Seiersten and Tibballs (1993) and Kowalski and
Spencer (1993), respectively. In these systems there is a second-order transition between
B2 and A2 and this enforces the treatment of the ordered and disordered phases by use
of the same Gibbs-energy expression.

In many other systems a phase with B2 structure appears as an intermetallic phase
with more or less restricted solubility, for example Fe—Ti. In such cases it is frequently
treated as a separate phase from the disordered A2 phase, using, for example, a Wagner—
Schottky model; see section 5.8.2.3. However, this is not recommended because, on
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Figure 5.20 The disordered A2 (a) and ordered B2 (b) variants of the bcc lattice. From the
Crystal Lattice Structures web page (http://cst-www.nrl.navy.mil/lattice).

extending into a ternary, the B2 phase may form a continuous solution to another binary
system for which there is a second-order A2/B2 transition, for example in Al-Fe—Ni, see
section 3.3.3.

The B2 ordering requires a two-sublattice model in which the sublattices have equal
numbers of sites and must be treated as identical for crystallographic reasons. It is thus
irrelevant for the Gibbs energies of formation whether element A is in the first sublattice
and element B in the second or vice versa; one has

°G,; =G (5.129)

Ji

All interaction parameters on the two sublattices must also be symmetrical, thus

Lijw = Ly j (5.130)
Liki = Liijx (5.131)

Note that these parameters will give a contribution also in the disordered state, i.e., when
v =y/ = x;. In section 5.8.4.1 this feature is discussed in detail.

As discussed in section 5.8.2.3, there are both anti-site atoms and vacancy defects in
B2. Thus, since the two sublattices are crystallographically equivalent, a binary model
would be

(A,B, Va),(A, B, Va), (5.132)

This means that one has nine end members for a B2 phase with two different defects
on each sublattice. However, many of these can be eliminated using the requirement
that the model must be symmetrical with respect to exchanging the constituents on the
sublattices, thus

‘Gap = “Gpa (5.133)
o(;A:Va = c’(;Va:A (5134)

OGB:Va = oGVa:B (5135)
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Using the fact that B2 is an ordered bcc phase, one also has that

G = G (5.136)

°Ggp = G (5.137)

Finally there is a parameter °Gy,.y, and there is no well-defined value to assign for
this. The parameter °G% is related to the energy needed to create thermal vacancies, but,
since this is dependent on the element, it is better to use the parameter L, to determine
this. There has been some argument that this parameter represents empty space and its
value should thus be zero, but this reasoning is doubtful and it creates numerical problems
since the parameter is for zero amount of real atoms. When the number of real atoms
approaches zero the Gibbs energy per mole of atoms becomes zero divided by zero,
which can give very large negative values and thus make a bcc phase consisting mainly
of vacancies very stable. Other arguments are that one should consider it as a phase full
of defects and use a very large positive number to suppress the thermal vacancies. The
present recommendation is to use a reasonably large positive value like 307 in order to
avoid numerical problems and fit an interaction parameter to describe the real vacancy
fraction.

It is important to model the B2 phase in a compatible way in each binary since one
often has solubilities of ternary elements across the whole composition range, for example
in Al-Fe—-Ni; see section 3.3.3. In this ternary system the model for the B2 phase must
include the disordered bcc phase as a special case. More about modeling ordered phases
can be found in section 5.8.4.

A model for L1,/A1 ordering

The Al structure type is shown in Fig. 5.21(a) together with some ordered structures. The
L1, ordering means that the eight corner atoms are of a different kind from the atoms on
the sides. This gives an ideal stoichiometry A;B and initially this was modeled with two
sublattices, (A, B);(A, B),. In this model the constituents in the sublattice with three sites
have eight nearest neighbors in the same sublattice. This means that there is a relation
between the Gibbs energy of formation °G,.; and the interaction parameters L,z since
both are related to the bonding energy of the nearest neighbors. The recommended way to
model ordering on the fcc lattice is to use four sublattices, as described in section 5.8.4.4.
A problem with using the two-sublattice model in an assessment of an L1, ordering is that
it may predict an ordered L1, ordering if the parameters are converted to a four-sublattice
model.

The L1, phase is the most important ordered fcc phase and it may be practical
to use the two-sublattice model for multicomponent systems. There are rather compli-
cated restrictions on the parameters that are needed in the two-sublattice model sub-
lattice. The method employed to convert from a four-sublattice model is described in
section 5.8.4.6.



134

58.3

Models for the Gibbs energy

@ (b) (©

Figure 5.21 The disordered A1 (a) and ordered L1, (b) and L1, (c) variants of the fcc lattice.
From the Crystal Lattice Structures web page (http:/cst-www.nrl.navy.mil/lattice).

Models with three or more sublattices

Many crystalline phases have more than two sublattices, but it may be necessary to
simplify the models to fewer sublattices since there might not be enough experimental
data. Nonetheless, it is fairly common to use three or four sublattices to describe real
phases. The model for a phase with three sublattices is

(A,B,...), (K.L,...), (UV,...), (5.138)

When the same constituent enters more than one sublattice, it may be useful to remind the
reader about Eq. (5.29) concerning how to obtain the mole fractions from the constituent
fractions.

The Gibbs-energy expression for a phase with three sublattices is

- Z Z Z y'{y.;,yl/c”oGi:j:k + phys Gm
ijok
+RT(GI X/ n0) +a 2 1)+ 2ol ) ) LEG, (5.139)
i j

where

ZZZZWMW} i

Jj ok 1=
+ZZZZy;);/y]’cﬂy;, ij,l:k
j ok I>j
T2 22 VN i
Jj ok I>k
+ZZZZZy/y;,ylZ/y;y:n Ilmjl\+'“
j ok I>km>i

+ZZZZ 2 ViYL (5.140)

Jj k I>km>j

The number of possible excess parameters is very large, but normally very few are used.
The most important parameters to optimize are those in the surface of reference, °G,. ;.
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Phases are not very commonly modeled with four or more sublattices and several
constituents in each because it is difficult to acquire enough experimental data to evaluate
the necessary number of parameters. An exception is when there are crystallographic
relations between the parameters, as in the case of chemical ordering. In the next section
a four-sublattice model for ordering on the fcc lattice will be described.

Models for intermetallic phases

Some intermetallic phases have been modeled with three sublattices, the most well known
perhaps being the o and the p phases (Fig. 5.22). In both cases the crystallographic
information has been simplified in the thermodynamic modeling. The o phase has five
different crystallographic sublattices, but only three are used in the modeling. The main
reason for this is that there is not enough experimental information to evaluate all neces-
sary parameters for a five-sublattice model. Such information would be the distributions
of the various components on the sublattices, which are rarely known. In the o phase the
first sublattice is mainly occupied by fcc-type elements, the second by mainly bcc-type
elements, and the third is a mixture of all.

The composition range of the intermetallic phase is important to consider when decid-
ing on the sublattices. If the intermetallic phase appears in several systems, all of these
should be considered before selecting a model. The constituents of a sublattice would
normally be those which can be the only constituent on that sublattice, but, in order
to describe the composition range, it may be necessary to include some components as
“defects” in sublattices that they normally would not enter. However, this may increase
the number of parameters significantly in multicomponent systems and should be done
with care. Sometimes one may accept an error of a few percent in the composition range
in a lower-order system in order to simplify the multicomponent description.

It is important for the development of a general thermodynamic database that all
agree to use the same set of sublattices when modeling a phase. In the second Ringberg
report Ansara et al. (1997a) presented a survey and recommendations regarding the mod-
eling of many intermetallic compounds. For example, they recommended that the o phase
be modeled with three sublattices and the site ratios 10:4: 16, not 8:4: 18 as had been

Figure 5.22 The crystal structures of o (left) and L2, (right) phases. From the Crystal Lattice
Structures web page (http://cst-www.nrl.navy.mil/lattice).
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used previously. The reason for the earlier model was to simplify the description of the
composition range of the o phase in the Ni—V system and to describe the composition
range of the o phase in the Cr-Fe-Mo system.

The possibility of using ab initio calculations to obtain values for metastable end
members in intermetallic phases is rapidly becoming an important source of information,
for example on the Re—W (Fries and Sundman 2002) and Cr-Fe (Korzhavyi et al. 2005)
system. Since the CEF can use the energies calculated for the ordered end members
directly without any cluster-expansion approximation and because SRO is insignificant in
these phases, the combination of the CEF and ab initio methods amounts to an important
step forward for the development of new materials.

The availability of improved experimental techniques such as Rietveld refinement
(Joubert 2002) also means that additional information on site occupancies and defect
fractions has become available to use in the modeling of phases. The experimental
determination of the site occupancy of the p phase in the Nb—Ni system showed that
none of the previous models, which had been selected arbitrarily or on the basis of
coordination-number arguments, coincides with the one revealed by the experimental
results (Joubert and Feutelais 2002).

Models for metal-non-metal phases

The M,;C, phase is an example of a phase that has been modeled with two sublattices
for the metallic elements and one for the carbon, in order to treat the limited solubility
of the heavy elements W and Mo in a proper way. The crystallographic information
would give (Cr, Fe, . . . ),,(Cr, Fe, W, Mo, . . . ),Cq, but it was not followed entirely since
that would not have described the full composition range. Instead a model of the form
(Cr, Fe, . ..),(Cr,Fe, W, Mo, . ..),Cs was adopted.

Many oxide phases have different types of metallic sublattices, for example the spinel
phase. In this phase the oxygen ions form an fcc lattice and the metallic ions enter some of
the tetrahedral and octahedral interstitial sites. A four-sublattice model has been adopted
for this phase, which can also describe the wide stability range of the spinel phase in the
MgO-Al,O; system.

An interesting application of the three-sublattice model is to the Fe—Al-C system. In
the ferrite phase, carbon dissolves interstitially and Fe—Al can form a B2 ordered structure.
This means a combination of two sublattices for ordering of the metallic elements with
one extra sublattice for interstitials. Some care must be taken with the model parameters
to ensure that the disordered phase remains stable, but, using the partitioning as described
in section 5.8.4.1, that is no problem.

Models for phases with order—disorder transitions

The sublattice model can describe phases that exhibit ordering of the metallic constituents
on different sublattices that may disappear above a certain temperature or beyond a partic-
ular composition, for example the B2/A2 transition already mentioned in section 5.8.2.4,
the L1,/Al transition in section 5.8.2.5, and the four-sublattice models in sections 5.8.4.4
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and 5.8.4.7. If one restricts the model parameters to just the ideal model without excess
parameters, the sublattice model is identical to the Bragg—Williams—Gorsky treatment of
ordering, but with the excess parameters in the CEF one may reproduce the real properties
of the ordering transformation better.

In the disordered state the constituents are distributed equally but randomly on the
sublattices. In the ordered state the constituents have different fractions. This degeneration
of the two or more ordered sublattices into a single one enforces several restrictions
on the possible parameters in the CEF, otherwise the disordered state would never be
stable. These restrictions are based on the requirement that the Gibbs energy of the phase
must have an extremum against variations in the ordering variables at the disordered
composition. In the disordered state such a requirement is self-evident and the extremum
must be a minimum, otherwise the phase would undergo ordering. Such requirements
were first derived by Ansara et al. (1988).

In some cases the ordered phase is described with a different Gibbs-energy expression
from that used for the disordered phase. The ordered phase will then normally never
be completely disordered. Such a treatment of ordered phases is not recommended in
general, although some ordered structure types, such as D0O,, and L2, see Fig. 5.22 and
section 5.8.4.7, may require too many sublattices for it to be practically reasonable to
treat them with a single mathematical expression.

The configurational entropy for a phase with an order—disorder transition may deviate
considerably from the ideal entropy used in the sublattice model. However, from a
practical point of view these differences can be modeled in terms of the excess Gibbs
energy without losing any agreement with experimental data, although one may suspect
that the extrapolations based on these simplifications may be less accurate than a proper
treatment of the configurational entropy. For future work it is recommended that models
making use of the CVM, see section 5.7.2.2, or similar techniques should be considered
for phases with order—disorder transitions.

The disordered state of an ordered phase

For phases modeled with an order—disorder transition like the B2/A2 case in section 5.8.2.4
both the ordered and the disordered state can be described with a single Gibbs-energy
function.

Applying y; =y = x; to the G,, expression (5.104) for an ordered binary A-B phase
and a regular-solution interaction parameter gives

G = YaYa *Gaa + Y5 ‘Gas +Y5Y4 “Gpa + Y55 Gois
+0.5RT [y, In(yy) + ¥ In(y5) + yx In(y) + 5 In(vg) ]+ Ya Vs Lap:s + Vi Vs Lean
= xi °Gaat2x,x5 °Gppt+ sz °Gpp + RT [xIn(x,) + xg In(xp)] + 2x, xp Lpp.s
= xi ‘GpntXaXp Gan + XZB Gpp+XaXp Gpp
+x5,X5(2°G ap — “Gppa — “Gpip) + RT [x5In(xy) + x5 In(xp)] 42X, X5 L g+

= x5 °GA +x5°Gg + RT [x,In(x,) + x5 In(xp) |+ x5 x5 Lag (5.141)
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The star, *, used instead of a constituent index in the parameters above indicates that
the parameter is independent of the constitution of that sublattice. In the derivations of
the relations above, °G .5 = °Gg., and L,g.« = L..,5 have been used and in the last line
also the substitutions

Gy = 0GA;A
Gy = °Gpp (5.142)

Lap = 2°Gpp —°Gan —°Gpp+2Lap

The fact that the parameters used to describe the ordered state also influence the
disordered state is a disadvantage when the ordering is added to an already-assessed
disordered phase. Also when extrapolating binary systems with and without ordering to
a ternary system this model requires that the parameters derived for the substitutional
model for the disordered phase be converted to the two-sublattice model. This can always
be done by replacing the mole fractions by the appropriate site fractions,

0.5(yy +ya

0.5(yg + g (5.143)

XA

XB

but it is rather cumbersome for multicomponent systems.

These were the reasons for introducing a “partitioning” of the Gibbs energy for an
ordered phase into one part that is independent of the ordering and one that describes the
contribution to the Gibbs energy due to ordering.

Partitioning of the Gibbs energy for ordered phases

For phases with order—disorder transitions the partitioning of the Gibbs-energy expression
is into two parts, a general part, which depends only on the composition of the phase,
expressed as mole fractions x, and another part giving the contribution due to long-range
ordering, depending on the site fractions y:

G = G (x) +AG™(y) (5.144)

The first term, G%(x), is independent of the ordering state of the phase. The second
term, AG%, gives the contribution due to long-range ordering and must be zero when
the phase is disordered. The simplest way to ensure that AG% is zero in the disordered
state is to calculate this contribution as

AG™(y) = Go(y) — G (y replaced by x) (5.145)
In Eq. (5.145) the parameter describing the ordering, G, is first calculated with the

original site fractions, y, which describe the ordering. The site fractions are then set equal
to the mole fractions, x, which means that each constituent has the same site fraction in
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all sublattices, and the value of the expression is calculated again. The difference is the
contribution to the Gibbs energy due to ordering. If the phase was originally disordered,
the two terms will be equal and the difference will be zero.

Ordered phases become less ordered with increasing temperature. Above a certain
temperature LRO may disappear completely, but some SRO will remain even in the
disordered state. If the ordered phase has no order—disorder transition within the experi-
mental range, for example the ordered phase may melt before it disorders, there is a
certain arbitrariness in the distribution of the Gibbs energy between G%(x) and G°(x).
It may be possible to resolve this using ab initio calculations.

An important advantage of this partitioning is that it is much easier to combine
assessments, including assessments of both ordered and disordered descriptions of a
phase. If a system has a disordered contribution only, that is added to the G%* part and
no parameters are needed for the G part.

It is important to understand that the partitioning of the Gibbs energy into an ordered
and a disordered part is not a new model; the Gibbs-energy expression can always be
written using the site fractions only. It is a simplification that is useful for calculations
of ordered phases in multicomponent systems.

The quasi-chemical model and long-range order

An interesting connection with the quasi-chemical model for SRO is that one can calculate
site fractions for a two-sublattice model from the “bond fractions” y,., Yag, Yga, and

YpB a8

y,,a Yaa + Yas

)’;3 = Ygat+ VBB
YrA = Yaa+Vma (5.146)

Y5 = Yan T Vas

Note that it is essential to treat y,5 and yy, as different, otherwise one cannot describe
the long-range ordering. This means that a quasi-chemical model can be formally treated
as a two-sublattice model, but in addition it includes a contribution from SRO. It is not
possible to calculate the bond fractions from the site fractions without introducing an
additional variable e:

Yan = YaVat€
Ya = YpVg —€
YBA = YpYa —€ (5.147)

o

YBB = YpYg T €

It is this € variable that describes the SRO. The quasi-chemical model is not
used for assessment since it is limited to crystalline structures that can be described
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with a two-sublattice model with all nearest neighbors on the opposite sublattice,
but it has been applied to liquids, see section 5.9.3. Note the problem with nega-
tive entropies for large SRO shown in Fig. 5.17(b) if one uses a quasi-chemical
model without allowing for LRO. Models for crystalline phases with explicit SRO are
based on the CVM, see section 5.7.2.2; models with implicit SRO are described in
section 5.8.4.5.

Simultaneous L1, and L1, ordering

With four sublattices one may model both L1, and L1, ordering on the fcc lattice.
Actually, there are many more ordered structures based on the fcc lattice, but most of
them can be treated as separate phases with different Gibbs-energy expressions. The
restriction that these phases will never undergo disordering is usually a minor problem.

In the four-sublattice model the restrictions on the parameters can be derived fairly
easily from the symmetry of the lattice. For example,

o o o o
GA:A:A:B = GA:A:B:A = GA:B:A:A = GB:A:A:A
o __ o __ o __ o __ o __ o
GA:A:B:B - GA:B:A:B - GB:A:A:B - GA:B:B:A - GB:A:B:A - GB:B:A:A
o __ © __ 0o __ o
GB:B:B:A - GB:B:A:B - GB:A:B:B - GA:B:B:B (5148)
o __ o o __o©
LA,B:A:A:A - LA:A,B:A:A - LA:A:A.B:A - LA:A:A:A,B

The L1, and L1, ordering and also the disordered A1l phase can be described with the
same model. Normally the Gibbs energy is partitioned into a disordered and an ordered
part as described in section 5.8.4.2. The L parameters above are then normally not used
since they can be described in the disordered part. If one assumes that the bond energy
between AB pairs, u,5, depends only slightly on the composition, one can write the G
parameters as follows:

Bupg +Au,y

‘Ganns = GA3B
‘Gaans = G, = dUsp (5.149)

°Gappp = GAB3 = 3uxp +Au,

The factors of 3 and 4 above come from the number of AB bonds in each end member.
The bond energy may be different when the overall composition is different and thus the
terms Au, and Au, can be used as corrections to fit the experimental data.

It is a critical test that one has used a correct set of parameters that the disordered
phase can really be disordered, i.e., that all site fractions on all sublattices are equal at
some high temperature. If there is a deviation, even a small one, then probably one or
more parameters are missing or have wrong values.
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5.8.4.5 Approximation of the short-range-order contribution to the Gibbs energy

The SRO contribution to the Gibbs energy of the fcc phase can be approximated with a
reciprocal parameter as shown in Eq. (5.102). For a four-sublattice phase one can have
three different such parameters:

Lapasaa = Lapaapa=: =L
LA,BZA,B:A:B = LA,B:A:A,B:B == LAB (5150)
Lypasss = Lappans =" =Lgp

Unless there is a lot of experimental information on the system, one may set all of these
equal and just use

Lypaprs =Laprapr = = Lo =ug+Aus (5.151)

A reasonable initial value is obtained, according to Abe and Sundman (2003), by setting
this parameter equal to the bond energy, u,5, and, if necessary, using a small correction
term, Aus. The SRO should vanish at high temperatures, which can be achieved by mul-
tiplying u, by a factor like exp[(TC -7 / (2TC)], where T is the ordering temperature
for the equiatomic composition.

The “prototype” fcc phase diagram shown in Fig. 5.23(a) was calculated with a single
constant bond energy u,z = —10000Jmol™" used in Egs. (5.149) and (5.151) with all
Au; = 0. This diagram is almost identical to the prototype phase diagram for fcc ordering
calculated using a CVM-based tetrahedron model, as shown by Sundman and Mohri
(1990). The thermodynamic functions at 700 K for the system are plotted in Fig. 5.23(b).
The entropy curve is like teeth on a saw and, for ordered compositions, the entropy is
almost zero. The heat-capacity curve is even more irregular, as discussed by Kusoffsky
and Sundman (1998).

To describe a real binary phase diagram with fcc ordering, one has to investigate the
parameters of the Gibbs-energy function that can be adjusted. The Gibbs energy has been
partitioned between the disordered fcc and the ordered phases according to Eq. (5.145):

Gtmol _ Gﬁl(xi)_’_AGomrd(yi) (5.152)
4
GA' = > x°G;+RT Y x;In(x;)+x5x5 > (xpa —x5)" "LRYy (5.153)
i=A.B i=A,B v=0
AGY = Gl (y) — G (x) (5.154)
4
Or 1 2 3 4o s s Or
Gmd = Z Z Z Z yl( )yj' )yl(( )y§ ) Gijk[+RTZ Z yz()ln(yi())—’—EGmd
i=A,B j=A,B k=A,B I=A,B s=1i=A,B
(5.155)

3 4
EGat =3 3 w0 v L (5.156)
s=1t

=s+1
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Figure 5.23 A prototype phase diagram for fcc ordering with two L1, ordered phases and one
L1, ordered phase is shown in (a). The diagram is calculated using a single Gibbs-energy
function, Eq. (5.152), with a single bond energy value u,; = —10000Jmol™". In (b) the
dimensionless thermodynamic functions at 700K are plotted (the entropy is scaled by a factor of
10, to make it more easily visible). The vertical dotted lines indicate the two-phase regions.

In the disordered part, Eq. (5.153), the contribution due to SRO must be included and
the following parameters must be set using the notation from Egs. (5.149) and (5.150):

YL = Gaop+1.5G 5, + Gpp, +0.75Ly5 +0.75Lgz + 1,

'LR'y = 2G 5,5 —2G g, +0.75L, —0.75Lg + 1,

LYy = Gop—1.5G s, +Gap, — 1.5L,5 +1, (5.157)
LAy = —0.75L,4, +0.75Lgg

*LA's = —0.75Lyp +1.5Ly5 —0.75Lyg

These parameters can be derived from the four-sublattice model by setting all site
fractions equal to the mole fractions and identifying the interaction parameters in the
substitutional model. The coefficients [, to [, are zero in Fig. 5.23 but can be optimized to
fit experimental data. It is necessary to include the ordered parameters in the disordered
part because otherwise one would not have a separation of the three maxima for the
order—disorder transitions.

One may think that including the SRO contribution in the disordered part, G%, would
give twice the SRO contribution when the phase is ordered. However, according to
Eq. (5.154), the SRO contribution from the ordered part will be subtracted using mole
fractions and thus cancel out the contribution from the disordered part when the phase is
ordered.

The phase diagrams in Fig. 5.24 show the influence of varying the Au and [,
parameters. In both diagrams u,z = —10000Jmol™', Au;, = —1000Jmol~', and
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Figure 5.24 Ordered phase diagrams, with (a) I, = 0 and (b) [, = 40000J mol ™", for fcc with two
L1, ordered phases and one L1, ordered phase calculated using a single Gibbs-energy function,
Eq. (5.152), with different parameter values, according to Egs. (5.149) and (5.153); the values are
given in the text.

Au, = 4+1000Jmol ', and in (a) the disordered [, parameter is zero whereas in (b) it is
40000J mol .

The same four-sublattice model can also be applied to ordering in hcp phases. It is
also possible to add a fifth interstitial sublattice to the ordered model, but all parameters
for the interstitial component should be in the disordered part.

It is of historical interest to mention that the first order—disorder phase diagram for
fcc was calculated by Shockley (1938) using a Bragg—Williams—Gorsky model without
the reciprocal parameters, Eq. (5.151), and he could then not separate the three ordering
maxima. It was a success of the CVM when Sanchez er al. (1982) showed that a CVM
tetrahedron model could describe the topology of the ordered fcc phase diagram with
three separate maxima.

Transforming a four-sublattice ordered fcc model to the two-sublattice model

The relation between the parameters for the two-sublattice L1, model can be derived
from a four-sublattice model in which the site fractions on three sublattices are set equal
and related to the normal parameters in the two-sublattice model, or by using the criterion
that dG/dy, = 0 for the disordered state for all independent y,. The reason for using a
two-sublattice model is that calculations with it are significantly faster, but it means that
one cannot calculate a possible L1, transformation.

Higher-order systems with an L1, phase modeled with two sublattices require a lot
of ternary and some quaternary interaction parameters dependent on the binary ones in
order to make the disordered state stable. For a phase (A, B, C,D);(A, B, C, D) the list
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below shows some of these parameters as derived by Dupin (1995), which can also be
found in Kusoffsky e al. (2001):

07 ord
LA,B:A

1y ord _
LA,B:A

—1.5G 5, +1.5G 5, +1.5G 4

0.5Gap, — 1.5G 5, +1.5G 5 5

LOAr,dB,C:A = 6G,pc — 1.5Gp,c = 1.5GApc, = 1.5G 5,5 —1.5G 4,5,

+Gap, —1.5G 50— 1.5G 5 0, + Gag,

LY n = 6Gapp — 1.5Gap,p — 1.5G app, — 1.5G 5 5 — 1.5G 5 5,

+Gap, —1.5G 50— 1.5G 4 p, + Gap,

(5.158)

OLYCaA = —1.5G ¢, +1.5G ¢, +1.5G ¢

139, = 0.5Gac, — 1.5G A 0, +1.5G

L?{fic,D:A = 6G,cp— 1.5G 5,0 = 1.5Gcp, = 1.5G5,c = 1.5G,,c,

+Gac, — 1.5G 5,0 — 1.5G 5 p, + Gap,

LY = —1.5Gp, +1.5G 5, +1.5G p

1y ord
LA.D:A

o,~ord
GB:A

0.5Gap, — 1.5G x,p, +1.5G

G as,

5.8.4.7

It is not necessary to give a complete list since software can generate all these
parameters. The parameters from the four-sublattice model are denoted as in Eqgs. (5.149)
and (5.159). The symbols G 4, etc. have the same meanings as for the respective binary
systems according to Eq. (5.149). The new symbols introduced are defined as

G g,
Gag,c
Ga,Bc

GABCD

Upp + 2upc + 2upe + Auy
2upp + Upc + 2upe + Aus (5.159)
2upg + 2upc + uge + Aug

Upp +Upc +Uap + e +upp +tcp + Aty

where u,y etc. are from the binary systems but the terms Au, to Au, can be optimized
to fit data in the ternary system.

B32, D0;, and L2, ordering

The B32, DO,, and L2, phases are ordered forms of the A2 structure type and require
four sublattices for their modeling. The ideal composition of a B32 ordered phase is AB,
as for B2, but not all nearest neighbors are different. The ideal composition of a DO,
ordered phase is A;B, as for L1,, but, in contrast to L1, ordering, the DO, ordering does
not have identical surroundings in the three sublattices with the majority constituent.
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One difference between the four-sublattice models for ordering in bee and fcc phases is
that the bce ordering requires two bond energies, both nearest and next-nearest neighbors
are important. In B2 ordering it is sufficient to have two sublattices, one with the central
atom, the other with the eight corner atoms. In DO, ordering one must consider eight bec
unit cells and each of the previous sublattices is split into two new ones in such a way
that the atoms on the same sublattice are arranged diagonally. The four sublattices must
be grouped two and two since all nearest neighbors are on two of the sublattices and all
next-nearest neighbors on the third. If sublattices 1 and 2 have no nearest neighbors and
neither do sublattices 3 and 4, the compound energies are

Gpnns = Gaasa = Gapaa = Gpaaa 2€a8 T M
Ganns = Gppandeas (2) (5.160)
OGA:B:A:B = OGA:B:B:A = OGB:A:A:B = OGB:A:B:A 2655+ 2758

where 7,5 is the next-nearest-neighbor bond energy.

The L2, phase is also known as the Heusler phase with the ideal composition A,BC
and can appear only in ternary systems; the lattice is shown in Fig. 5.22. It has the same
arrangement of sites as DO,, but two sublattices have the same element (A) while the
other two have different elements (B and C).

Partitioning of the Gibbs energy for phases that never undergo
disordering

Phases with many sublattices may become very complicated in multicomponent systems
since the number of “end members” is the product of the number of constituents in
each sublattice. Many of these “end members” may represent compositions inside the
single-phase region or far outside the phase’s stability region, thus it can be impossible to
assess or evaluate any parameter value for these. The technique of setting the parameters
equal to the mean value of the Gibbs energies of formation of each constituent, like in
Eq. (5.39), is one possible way to handle this.

Another recent model involves partitioning the Gibbs energy into a substitutional and
a sublattice description also for phases with sublattices that never disorder. For such a
case there is no need to make the ordered contribution equal to zero and for those phases
one simply has

Gy = G (x) — T 8% 4 AGo (5.161)
AGH() = Gt () (5.162)

GY is described with a substitutional model and G° includes the sublattices according
to the crystalline structure. In Eq. (5.161) the ideal configurational entropy °fS% is
subtracted from the disordered part and the configurational entropy is calculated for the
ordered part only.

The physical reason for adding a disordered contribution to a phase like o is that the
interaction energies need not depend strongly on the sublattices where the constituents
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are located. In particular, for a phase with a narrow composition range the disordered
contribution makes it possible to have a smoother enthalpy curve far away from the
composition range of stability and avoid unphysical curvatures. It also seems possible
to model phases with small composition ranges with fewer parameters, using disordered
interaction parameters.

This partitioning for phases that are always ordered is a very new model and little
practical experience has been obtained. For the Laves phase the usual model has all
constituents on all sublattices, but the o phase is normally modeled with a restricted set
of constituents on the sublattices. With a disordered part it may be advantageous if all
constituents were allowed to enter all sublattices. In the first case one would use for Fe—Cr

(Fe) (Cr)(Cr, Fe) (5.163)
and in the second case
(Cr, Fe),((Cr, Fe),(Cr, Fe) 4 (5.164)

An advantage of the second method would be that one could assign a value just to
the °Gy, representing pure o Fe and would not have to bother about multicomponent
parameters like °GP,.\,n that cannot be determined from experimental data. The value
of °G{, have to be estimated or determined from ab initio calculations. This partitioning
is used in the case study of the Re—-W system in section 9.3.

Partitioning of parameters in physical models

Physical properties that are modeled separately, such as magnetism, may also have
their parameters partitioned between the ordered and the disordered part. The individual
parameters such as the Curie temperature from both parts will be added together before
they are used to calculate contributions to the Gibbs energy of the phase. In Fig. 5.4
the assessed critical temperatures for magnetic ordering in the bcc phases in the Fe—Cr
system and for fcc and bee phases in the Fe—Ni system are plotted.

Models for liquids

The substitutional-solution model is the most commonly used model for liquids. The
associate model, described earlier, is often applied to liquids that exhibit a tendency
toward SRO. The description of these models will not be repeated here.

Metallic liquids
Most metallic liquids can be well described in terms of a substitutional solution of the

elements with a Redlich—Kister excess Gibbs energy, Eq. (5.51), which is repeated here:

Gn=>.x°G;+RT > x;In(x,)+"G,, (5.165)

i=1 i=1
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where x; is equal to the mole fraction. The binary excess Gibbs energy, using the Redlich—
Kister series explained in section 5.6.2.1, is

FG, = XY xixLy (5.166)
i j>i
k
Ly =Y (x;—x)""L; (5.167)
v=0

Ternary and higher-order terms can be added as for solid solutions, as described in
section 5.6.4. For the liquid phase it is also sometimes useful to introduce other ternary
extrapolation models, as described in section 5.6.6.

Liquids with strong short-range order

Some liquids have a tendency to exhibit SRO around certain compositions. This is usually
apparent also in the solid state with a stable compound of that composition. The heat of
mixing of the liquid should have a pronounced “V”-shape and it can be modeled with
associates, see section 5.7.1, or, for cases in which the SRO is due to electronic charge
transfer, the particular models for liquids described below.

Quasi-chemical entropy for liquids

Short-range order is particularly important in liquids and several models have been pro-
posed for various types of liquids. The already-mentioned associated model is particularly
useful for the liquid phase when different atoms like to be close to each other but still do
not form stable molecules. Since the associated solution still uses the ideal configurational
entropy, several attempts have been made to improve the agreement with experimental
data by taking into account a quasi-chemical entropy expression. Two such models will
be described here because they can be used in the PARROT program.

The modified quasi-chemical model

Various modifications of the quasi-chemical model have been used with considerable
success by the FACT (Bale ef al. 2002) group in Montreal to describe oxide and sulfide
liquids. In their assessments they have not used the same model for the metallic liquid,
which makes it impossible to describe some systems like Fe—S and Zr—O for which there
is no miscibility gap between the metallic and ionic liquids.

This model has been modified several times and it has not been used for any assess-
ments with the software described in this book, so it will not be discussed further. The
interested reader is referred to the publications by Pelton et al. (Pelton et al. 2000, 2001,
Pelton and Chartrand 2001, Pelton 2001).

Just to investigate the importance of the quasi-chemical configurational entropy, a
quasi-chemical modification of the liquid two-sublattice model, described by Hillert
et al. (2001), has been tested. The liquid two-sublattice model is described below in
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section 5.9.4. For a simple system with ions all with unit charge, all cations mix on one
sublattice and all anions on the other, and the numbers of sites on the two sublattices
are the same. For this simple case this model is identical to the modified quasi-chemical
model of Pelton et al.,

(A, B (C'-, D), (5.168)

The configurational entropy in the ionic-liquid model is given by Eq. (5.183) and, for
the simple system above,

Cl7Chcme = Yac Gac+Yap Gap + ¥sc’ Gpe + Ysp Gap

RTz
+ - |:)’Acln< Iac ) +)’ADln(yA7D> + YBc 1“( Ysc )+yBD ]“(A)]
2 Yar Yei- Y+ Ypi-i Ypi+Yor- Ypi+ Ypi-

+ RT [y In(yps) + ypis In(ygis) + yor- In(yer-) + ypi- In(ype-)] (5.169)

The equation above is simplified by the fact that all charges are the same. This means
that it is similar to a crystalline quasi-chemical model, Eq. (5.79).

The reciprocal miscibility gap for this system has been calculated using the same
values for the end members in both models and is shown in Fig. 5.25 for the normal
ionic-liquid model (dashed lines) and for the ionic quasi-chemical model, Eq. (5.169)
(full lines). For the quasi-chemical model the number of bonds, z, was assumed to be 12.
The only difference between the models is in the configurational entropy, the effect of
which is quite small.
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Figure 5.25 The reciprocal miscibility gap for an ionic liquid (dashed lines) and that for the ionic
quasi-chemical model (full lines) calculated using the same Gibbs energies for the end members.
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5.9.3.2 The cell model

A binary cell model was proposed by Kapoor et al. (1974) and later extended to multi-
component systems by Guye and Welfringer (1984). It was first used for liquid oxide
slags, but has recently been extended to sulfides and fluorides also.

The cell model has a special form of the quasi-chemical entropy. One considers
cells with one anion and two cations. Originally only oxygen was considered, so the
presentation here will be limited to oxides. The cells can have two identical or two
different cations. The cells can be treated like constituents, but one has to be careful about
the numbers of atoms in the constituents. The general rule is that the same number of
anions must be provided from both cations in the constituent with two different cations.
The mole fractions of the “component oxides,” i.e., the cells with only one type of cation,
are, for n cations,

i+ 2 vy
5= Y L Uy (5.170)
9]
0=3 (yi+2v,-yi,-> (5.171)
i=1 J#i

where v; is the oxygen stoichiometry in the component oxide of the cation M, M, O,
As an example one may use the CaO-SiO, system, for which the constituents would be
(Ca0, Si0,, (Ca0),Si0,) and the quantities above would be

Yeao + 2Veusio,
Xca0 = T
Ysio, t Ycaysio,
Xsio, = T
O = Ycao + Ysio, T 3Veusio, (5.172)

The Gibbs energies of formation of the “component oxides” as well as the cell with
two different cations are simply introduced into the **G,, part of Eq. (5.1) multiplied
by their constituent fractions as in the ideal-solution model, Eq. (5.42). One has to be
careful that the parameters are given the right values considering the number of atoms in
the constituent; the parameters for formation of a cell are for one oxygen atom whereas
the constituents defined here will be for v; +v; oxygen atoms.

The model then introduces a sum over the component oxides, D; defined as

D= vx; (5.173)
j=i

The important property of this sum is that the “component oxides” must be ordered
in decreasing valency according to the cations. By introducing D, the model attempts
to account for the charged behavior of the cells. The expression for the configurational
entropy below, Eq. (5.174), is in principle derived by first distributing the highest-charged
constituents on all possible sites, then the second-highest-charged ones on the remaining
sites and so on.
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If two cations have the same valency, they are arranged in decreasing order of
“acidity.” The order is slightly arbitrary, but the proposed arrangement of cations is
(P5*, Si*t, (PO)**, Cr*f, AP’Y, Fe**, Cr*f, Fe’*, Mn?*, Mg?t, Ca®", Na't). Note
that several cations have two valencies and P also appears as a complex (PO)**, in order
to obtain a better description of the experimental information. The entropy expression of
the cell model is then

n—1
cnf u; D; Dy,
S =R— E D:In —D. In| —
" Vi i1 |: ' (”i’ﬂ') s ( Ui X; )]

. V;X; = Vi
—2R ) v.x;In —R In[ —
2 (D) L (D)

(5.174)
1

The first two sums are over all component oxides, but the last sum over j is for all m
constituents.

The excess parameters of the cell model are slightly special and will not be discussed
here.

The partially ionic-liquid two-sublattice model

This model has a very long name and it is usually abbreviated as the liquid two-sublattice
model, although that can be ambiguous. It is interesting to note that the sublattice model
developed by Hillert and Staffanson (1970) for solid phases was based on a model
suggested by Temkin (1945) to take into account the configurational entropy in molten
salts. In a liquid there is no LRO and one cannot distinguish sites for anions or cations,
but the mathematical formalism using mixing on two different sites gives good agreement
with experimental information. This means that exchanges of a cation with an anion
must not be counted in calculating the configurational entropy by use of Eq. (2.11). In
particular, on mixing four salts, A.C,, A,D,, B.C,, and B,D,, one obtains a reciprocal
system as shown in Fig. 5.26, with A and B in the first sublattice and C and D in the
second:
(AT, B"),(C7, D), (5.175)
If all ions have the same valence then P = Q = a and the Gibbs-energy expression
for this liquid is identical to that for a crystalline two-sublattice model. However, if the
valencies of the cations or anions are not equal, one must find some method by which
to maintain electro-neutrality in this liquid. One method is to use equivalent fractions
defined by

NA
= a (5.176)
ATNy N
a b
Ne
_ C
Ic = 7NC N ND (5177)
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Figure 5.26 The surface of reference for a reciprocal system. Note that the surface is curved even
without any configurational entropy or excess parameters. Courtesy of Qing Chen.

where a+, b+, c—, and d— are the valences of A, B, C, and D, respectively, and
P = Q= 1. However, the use of equivalent fractions has the drawback that it is impossible
to extend the model to systems with neutral constituents.

Hypothetical vacancies and neutral species

Therefore another model has been developed, which can be extended both to systems
with only cations (i.e., metallic systems) and also to non-metallic liquids, for example
liquid sulfur. This model is called the “partially ionic two-sublattice liquid model” (Hillert
et al. 1985) and it uses constituent fractions as composition variables. In order to handle
a liquid with only cations, i.e., a metallic liquid, hypothetical vacancies are introduced on
the anion sublattice, whereas in order to extend the model to non-metallic systems one
introduces neutral species on the anion sublattice. The model can be written as

(C/M)p(A, Va,BY), (5.178)

where each pair of parentheses surrounds a sublattice, while C represents cations, A
anions, Va hypothetical vacancies, and B neutral species. The charge of an ion is denoted
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v; and the indices i, j, and k are used to denote a specific constituent. The superscripts v;
on cations and anions as well as 0 for the neutral species will be omitted unless needed
for clarity. The numbers of sites on the sublattices, P and Q, vary with the composition
in order to maintain electro-neutrality. The values of P and Q are calculated from the
following equations:

P=)"vya,+ O (5.179)
J
0= Z Viyc,

where y; denotes the constituent fraction of constituent i. Equation (5.179) simply means
that P and Q are equal to the average charge on the opposite sublattice. The hypothetical
vacancies have an induced charge equal to Q.

The ordinary mole fractions can be calculated from the constituent fractions in the
following way for the components which behave like cations:

P Y,
Xo, = ——— (5.180)
! P+ Q(l - yVa)
For the components which behave like anions or neutral species:
9o, (5.181)

Xp = ————
Di P+Q(1_y\/d)

where D is used to denote any constituent on the anion sublattice. Equation (5.181) cannot
be applied to the hypothetical vacancies, because the mole fraction of vacancies is zero,
of course.

The integral Gibbs-energy expression for this model is

Srme = ZZyC,'yAI»OGCi:AI» + Qy\/a ZyCiOGC; + QZyBkOGBk (5182)
i i k

NSy = _R|:PZ)’C,. In(yc,) + Q(Z)’A] 1“()’A]) +va In(yy,) + D ys, IH(YBk)>i| (5.183)
i j k

J

EGm = Z Z Zyilyizyjl‘ilizzj + Z ZYi]yizy%/aLiliz:Va

ipoip i i

+2 2> Yi¥i Vi, Lijj, + > Z Yi¥i¥vaLijva
j

iJ1oh i

+ Z Z Z yiyjykLi:jk + Z ZyiykyVaLi:Vak + Z Zykl Ykszl ko (5.184)
i j ok ik ki Ky

where °Gc, ., is the Gibbs energy of formation for »; +v; moles of atoms of liquid C;A;.
°G, and °Gy, are the Gibbs energies of formation per mole of atoms of liquids C; and B;,
respectively. The factor Q in front of the second and third sums comes from the variation
of the number of sites with the composition. Note that G, in Egs. (5.182)—(5.184) is
defined for a formula unit that contains P + Q(1 — yy,) moles of atoms. 'S is a random
configurational entropy on each sublattice and G, is the excess Gibbs energy.
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The excess parameters

There are many possible excess parameters in this model and in the expression above
only the binary ones are included. The following list may be useful in order to relate
them to real systems.

L, ;,.; represents interaction between two cations with a common anion, for example, in
the CaO-MgO system, Leyo+ 202 -
L; ;,.v, represents interaction between two metallic elements, for example, in the Ca-Mg

system, L, v;,- The charge is irrelevant in this case. Note that this parameter is equiv-
alent to that in a substitutional solution of i and j if the parameter is multiplied by the
fraction of vacancies squared. The corresponding ternary parameter with three cations
must be multiplied by the third power of the fraction of vacancies in order for the
parameter to be compatible with the ternary interaction parameter in a substitutional
solution with three metallic atoms. This is discussed in more detail by Sundman
(1991b).
L; ;. is forbidden because the number of cation sites is zero.
L, ;, represents interaction between two anions in systems with a common cation, for
example, in the Ca(OH),~CaCOj system, Lc+.ont- cor--
i.jva TEPresents interaction between a metallic atom and an anion, for example describing
the Fe-rich side of the Fe—S system, Lg.+.g- v,-
L, ;. represents interaction between an anion and a neutral atom, for example describing
the sulfur-rich side of the Fe-S system, Lg.+ - g.
L.y, represents interaction between a metal and a neutral species, for example, in the
Fe—C system, Lge+ .y, c-
Ly, , represents interaction between two neutral species, for example, in the Si;N,~SiO,
system, Lg; x, sio,- Note that the cation is irrelevant in this case because the number
of cation sites is zero.

L

It is straightforward to include ternary interaction parameters in the model, but this
will not be described here.

Equation (5.182) may look formidable in its complexity and one may wonder whether
simpler models might not be equally useful. This criticism misses the point, because
Eq. (5.182) is the general multicomponent expression and this model is indeed identical
to simpler models in many special cases. The great advantage with Eq. (5.182) is that
it allows a continuous description of a liquid that changes in character with varying
composition. Equation (5.182) has successfully been used to describe oxide liquids,
silicates, and sulfides as well as SRO in liquids and also molten salts and ordinary metallic
liquids.

Compatibility between different liquid models

It is instructive to show how to convert from some different models to the liquid two-
sublattice model. A liquid with two metallic elements like Fe and Cr would normally
be treated as a substitutional-solution model, (Fe, Cr). In the liquid two-sublattice model
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the description would be (Fe*, Cr3+)Q(Va)Q (taking the dominant valency only). For
solutions with only vacancies in the anion sublattice, P and Q are always equal. All
parameters for interactions between cations evaluated for a substitutional model can thus
be used directly in the liquid two-sublattice model.

A liquid solution of C in Fe may also be treated as a substitutional solution, at least at
high concentrations of carbon. However, it would not be realistic to assume that carbon
has a positive valency and in the liquid two-sublattice formalism one would like to model
it like (Fe*™),(Va, C),,. It is quite remarkable that this is also mathematically identical
to a substitutional solution (Fe, C).

Another remarkable feature of Eq. (5.182) is that it becomes identical to the associate
model for some simple binary systems, for example the Cu-S system modeled with
an associate Cu,S. The associate model uses a substitutional solution of (Cu, S, Cu,S)
whereas the liquid two-sublattice model uses (Cu'*),(S*", Va, S),,, but it is possible to
identify the parameters in these two models with each other and they give identical results
in both models. The assumptions behind the associate model and the liquid two-sublattice
model are very different and it is interesting that these different assumptions can lead to
the same mathematical expression. This shows clearly that one cannot make any statement
about the true nature of a system just because a mathematical formalism based on some
physical model of the system gives a good result. It may be possible that another physical
model of the system will yield exactly the same mathematical formalism.

The aqueous solution

Model parameters for aqueous solutions are usually not stored in general databases but
are often re-evaluated from various models for each particular application. However,
parameters for a simplified Pitzer model and some other models used for aqueous solutions
can be evaluated using the techniques described in this book. Interested users are referred
to the particular software for instructions on how to handle the parameters of the models
implemented.

A model for polymers - the Flory-Huggins model

This model has been proposed for polymer systems in which the constituents can be very
different in size or volume. For each constituent a “size” parameter must be given. It is
used in the following binary expression for the Gibbs energy of mixing:

MG, = RT|:x1 ln<%) +x, ln(%)} 4 S8 nn 4 v, (5.185)
2

1 vy

where x; and x, are mole fractions, v, and v, are measures of the sizes of the constituents,
Xi» 1s an interaction parameter, and

d)l = 71}1)(1
VX VX, 5 186
oty (5.186)
<l52 =

VX + VX,
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It is not clear how to introduce composition-dependent binary excess parameters or how
to extend this model to ternary or higher-order systems. In order to conform with the
current models, the following general expression has been implemented in Thermo-Calc:

XX

G =x"G,+x,°G, + RT[x, In(¢,) + x; In(,) ] + Ly, (5.187)

VX + VX,

where the parameter L, = v, /5.

Chemical reactions and thermodynamic models

In chemistry it is common to use reactions to describe equilibria between different phases
or constituents in a phase. This is very simple and useful when there is only one solution
phase involved and this can be modeled as a substitutional phase. When there are many
constituents or the phases involved have complex structures, there are more problems than
simplifications in using reaction formulae. It is thus recommended that one use chemical
reactions only as an introduction to equilibrium calculations and then switch to using a
general minimization of the total Gibbs energy for equilibrium calculations as described
in section 2.3.

The solubility product

An example of a homogeneous chemical reaction was given in section 5.3.1. Here an
example of a heterogeneous chemical reaction will be given in order to show the relation
between chemical reactions and the thermodynamic modeling. The chemical reaction for
formation of the AIN phase from Al and N dissolved in liquid steel can be written

(Al) + (N) = AIN (5.188)

The parentheses around Al and N are used to denote that they are dissolved in an
unspecified solvent and the reaction formula does not specify that AIN is a different
phase, but all of this is usually evident from the context. If the liquid steel is an ideal
solution, the reaction can be written

°G + RT In(xy,) +°GK + RT In(x) = °GAR (5.189)

where the superscripts now denote the phases liquid (L) and solid AIN. Rearranging this
gives the solubility product

(5.190)

*Gan — Gl —°6x
RT

L L _
XAIN —exp<

The right-hand side is the equilibrium constant giving the solubility product. There is
thus a simple relation between the thermodynamic technique described in this book and
chemical-reaction formulae. The chemical reactions should never be used when two or
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more solution phases are involved or the model for any phase is more complicated than
the substitutional-solution model. Note also that Eq. (5.190) is formally very similar to
Eq. (5.127), but, for the latter equation, the defect fractions and the energy parameters
belong to the same phase, a so-called homogeneous equilibrium, whereas in Eq. (5.190)
the reaction concerns two different phases, a so-called heterogeneous reaction. This
difference is obvious when using thermodynamic models but rather obscured by the
reaction formalism.

Comparison with the Kréger and Vink notation

A method by which to describe equilibria with defects in ionic systems is to use the
Kroger and Vink notation, or something similar, in chemical reactions. This technique has
the same limitation as that of using chemical reactions for other equilibria as mentioned
above.

For example, the reaction of a gas containing oxygen with bunsenite (NiO) to form
a vacant site for Ni and two holes (denoted h*) in the conduction band to compensate
for the electrons taken up forming the oxygen ion can be written as a chemical reaction
using the Kroger and Vink notation:

0.508" = Vi, +2h" + O} (5.191)

In standard textbooks such as Birks er al. (2006) it is shown that the fraction of
vacancies in the Ni sublattice formed in this reaction depends on the partial pressure
of oxygen as p(l)é ®. This relation is obtained by using the “law of mass action” on the
reaction above and replacing the fraction of holes by the fraction of vacancies on the
Ni*" sublattice from the electro-neutrality condition.

In Chen et al. (1998) the modeling of semiconductors is discussed and, to formulate
a physically realistic model for the reaction above, it is reasonable to assume, as shown
by Grundy (2006), that each hole is associated with an Ni*" ion to form an Ni*" ion and
the model should be

(Ni**, Ni*™, Va),(0*), (5.192)

This model is identical to that used for wustite described in section 6.2.5.8 later. The
Gibbs energy for this model would be

o o o
G, = yniz+ ‘Gript:02- + Yniv+ Gist:02- + Yva "Gvacor-

+ RT(ype+ In(yyiz+) + i+ Izt ) + yva In(va)) (5.193)

The partial Gibbs energy for oxygen in the model can be calculated as the difference
between the partial Gibbs energies for the end members using Eq. (5.38),
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Go =2Gyp+.02- + Gy~ — 26N+ 02
=2(°Gyp+.0- + RT In(yyis+)) + °Gyao2- + RT In(yy,)
—2(°Gyp+.02- + RT In(yy+))
=AGy, + RT(2In(yyis+) +1n(yy,) —2In(ynie+ ) (5.194)
In the last line AGy, = 2°Gyip+.02- + °Gya0- — 2°Gpi2+.02- has been introduced for the

energy needed to create an Ni*™ jon plus a vacancy. Electro-neutrality requires Yt =2Vva
and, because the sum of site fractions is unity, yyz+ = 1 —3yy,, which gives

Go = AGy, + RT(2 In(2yy,) + In(yy,) 2 In(1 = 3yy,)) ~ AGy, + 2RTIn(2) + 3RT In(yy,)
(5.195)

where one has used In(1 — 3yy,) ~ 0 since the fraction of vacancies is small. Combining
this with the expression for the chemical potential for oxygen in the gas at the standard
pressure p, gives

0.5 ["Gfgj +RTIn <@)] — AGy, +2RTIn(2) + 3RT In(yv,) (5.196)
Po
Rearranging the terms gives
3RT In(yy,) —0.5RT In (pOZ) =0.5°G%> — AGy, —2RT In(2) (5.197)
Po

3 AGy, +2RT In(2) —0.5°GE"
COvT e (22 @ 0 (5.198)
V/Po,/Po RT

Ya = Apg, (5.199)

The Kroger and Vink notation does not specify the model for the phase and it is quite
arbitrary how one includes electrons and holes in a model based on the CEF. It can
nonetheless be illuminating to transfer a reaction notation to a CEF-type model in order
to understand how realistic it is.

Final remarks

In most models the excess Gibbs energy includes contributions from all kinds of phys-
ical phenomena, for example vibrational, electronic, and configurational, which are not
described separately in a magnetic model, for example. It is not practical to use very
detailed models for a particular contribution, for example configurational entropy, if other
phenomena with equal or larger contributions to the Gibbs energy are described with a
simpler excess model.

A note about model names may also be appropriate. For example, the special case
of the CEF applied to chemical ordering is called the Bragg—Williams—Gorsky (BWG)
model above when no excess terms are included, but some authors may call all models
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Table 5.1 A tentative classification of the different models. Note that the Gibbs energies of
“clusters” and “pairs” can be composition-dependent whereas the Gibbs energies of

“end members” in the CEF are not. All models with the point approximation are special cases
of the CEF.

Configurational
entropy Sublattices used Constituents Excess Model
Point No Elements No Ideal substitutional
Yes Regular substitutional
Species No Ideal (gas)
Yes Real gas or associate
Yes Elements No BWG
Yes Sublattice model
Species No Ideal CEF
Yes CEF
Pair No Pairs No Quasi-chemical
Yes Modified quasi-chemical
Complex Yes Clusters No CVM
Yes Calphad CVM

limited to the point approximation of the configurational entropy BWG models. A possible
classification of the different models, following Sundman (1990), is shown in Table 5.1.
Of course, all models are special cases of the Ising model (Ising 1925).

Adjustable parameters in the models

The models and formalisms described in this chapter usually contain many more adjustable
parameters than can be fitted with the available experimental values. This problem will
be discussed several times in chapter 6. It is important to understand that the most critical
parameters to be optimized are not those in the excess model, but those in the surface of
reference part, **G,,. When a phase is modeled with associates or with sublattices there
are parameters, such as °Gk,,g25n or °G%1 .. in the surface of reference energy that must be
fitted to experimental information. Since these parameters are multiplied by the lowest
power of the fractions, they will have a larger influence on the behavior of the Gibbs
energy than will any excess parameter. All parameters in *'G,, must be referred to the
reference state of the elements, but, if they describe compounds inside the composition
range of the phase, the Kopp—Neumann rule, see section 5.2.3, is often used in addition to
an adjustable enthalpy and entropy term. One must never set an end-member parameter
equal to zero.

In fitting a thermodynamic model to experimental values, the final value of each
adjustable coefficient depends on many of the different measurements and each measured
value contributes to many of the coefficients. The advantage of the least-squares method
is that these influences do not need to be known quantitatively, since the strategy of the
method itself is to select the best possible agreement among all the coefficients and all the
experimental values. Many of the parameters and coefficients of the models, however, are
not able to improve the fit between descriptions and measurements significantly. Using
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them in an excessive manner may lead the calculation to follow just the scatter of the
experimental values, creating maxima and minima where a smooth line is physically more
probable.

To judge whether a certain coefficient is well defined by the available set of measured
values, the effect of each coefficient on the shape of calculated curves should be known
at least qualitatively. It must be determined for each coefficient whether its influence
on the shape of calculated functions really is necessary to improve the fit between
calculation results and the experimental dataset. In the case studies in chapter 9 this check
is described. If it is difficult to find enough arguments in a given case, the least-squares
method should be applied twice, with and without the coefficient. Comparing the two
results makes a decision possible in most cases. It is better to start a calculation with
fewer coefficients than with some unnecessary ones. A systematic misfit between some
series of experimental points and the corresponding calculated curve usually gives some
hints regarding what parameter or coefficient should be added.

Models, formalisms, and curve-fitting formulae

In real phases a lot of features of the models described in this chapter may be more or less
redundant. Then the “general model” becomes a “formalism,” which is used to describe
the Gibbs energy of the phase by application of a “particular model.”

Using a formalism like the CEF, one may have many more parameters than necessary
to fit the available data. One may then be forced to use some parameters purely for “curve
fitting” of the experimental data, since it is not possible to relate their values to measured
quantities.

Curve fitting normally means that a set of data is fitted to a mathematical function,
ignoring any underlying physical or chemical relations. This can be the case also for
thermodynamic modeling when just a single property is fitted. For example, if a phase
diagram is fitted without using any thermochemical information, it is most unlikely that
the enthalpies and entropies obtained from such an assessment will be realistic. It is
mandatory to use all possible thermochemical information, even estimated values, to
obtain realistic values also of the separate thermodynamic properties of a system, i.e., for
the enthalpy, entropy, and heat capacity. In addition, one must take care that the model
parameters for a phase do not predict unrealistic values outside the range of stability of
the phase. However, the question of what is unrealistic is sometimes debatable.

The lack of data is usually the main reason for using “curve fitting,” since it might
not be possible to relate the model parameters to more than a single measured quantity.

Limitations in the models

Almost all models in commercial thermodynamic databases available today use the ideal
(point) configurational entropy. This is sometimes a severe limitation since the SRO must
then be modeled as an excess contribution. This excess contribution may give a bad
extrapolation to higher-order systems, but the effort needed to change to the use of quasi-
chemical or CVM-based models is considerable because the number of clusters increases
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exponentially with the number of components. Another problem with these models is
that one cannot just put a number of assessed systems together and extrapolate to a
higher-order system. One must add the necessary pairs or clusters for all combinations
of elements and calculate or estimate energies for these. Methods intended to simplify
the CVM by using fewer clusters, like the CSA (Oates and Wenzl 1996), may resolve
some of these problems, but any general change of model requires that all systems in the
databases today be reassessed. Thus one should be careful in selecting any new model to
be of general use.

Many simplifications in the modeling of the crystal structure may be necessary in
order to limit the model parameters, in particular when there is little or no experimental
information about the occupancies of the constituents in the sublattices. Even with very
good information about this, one must have a lot of thermodynamic information, either
experimental or from ab initio calculations.
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Starting the assessment

In chapter 5, various models were described in order to understand how they can be
fitted to the experimental features that were described in chapter 4. In the present chapter,
we start from experimental evidence and search for the model best able to describe it.
Therefore many topics of chapter 5 will be revisited here.

An assessor working on a system will experience almost all the steps described and
discussed here. Since a system is often reassessed many times, by the same researcher or
by another, it is very important to keep records about the decisions made in order to make
it easy to restart the work, for example, when new experimental evidence requires a new
optimization. The process of assessing a system is made easier if an assessment logbook
is kept. An important function of this logbook is that one should record all mistakes
and failures so that one does not repeat them later. In the final paper only the sucessful
modeling will be reported and there is no information about the difficulties encountered
in obtaining it.

The assessment methodology described here includes a critical assessment of the
available literature in the way in which it is normally done, for example, in the Journal
of Phase Equilibria and Diffusion. By combining this with thermodynamic models, an
analytical description is created and the determination of adjustable model parameters
is often done using the least-squares method to obtain a description that represents best
the complete set of available consistent experimental data. From this point of view
that technique can be called an optimization. However, the least-squares method can
work well only if the scatter of experimental data is completely random. Non-randomly
distributed deviations of some data may completely destroy the utility of the least-squares
method. They must be classified as systematic errors and excluded from the optimization.
Therefore subjective judgments are required and decisions have to be taken on the selec-
tion of data during the optimization. From that point of view, the technique can also be
called an assessment. A schematic picture of an assessment procedure is shown in Fig. 6.1.

Literature searching

The first step of the optimization process is the literature search. It is very important to
consider all the data that are able to contribute to the optimization of the description one
wants to carry out. A useful way to organize the literature is to classify it by the types of
the measured quantities.
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Figure 6.1 A schematic diagram of the Calphad assessment method.

A good start for the literature search is the Journal of Phase Equilibria and Diffusion.
The last issue of each volume contains a cumulative index of alloy systems. It covers
all the evaluations published under the aegis of the Alloy Phase Diagram International
Commission (APDIC). The articles quoted there are a critical analysis of the literature:
they give an overview of the literature and, if there are discrepancies between published
measurements, the authors of the articles amass arguments to decide which values are the
most reliable ones. The Journal of Phase Equilibria and Diffusion deals specifically with
phase diagrams, so most of the literature cited there is relevant for the optimization and
it usually covers much of the literature of interest. A scanning of the literature quoted
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in the JANAF tables (Chase 1998) may be complementarily useful for thermodynamic
data such as H-, S-, and C,-values. Auxiliary information helpful for the modeling of
Gibbs energies, for example types of point defects, carrier mobilities, variation of lattice
parameters with pressure, temperature, and composition, information from spectroscopic
methods such as Raman and Mossbauer spectroscopies, bulk-modulus data, thermal
expansion, vibrational (phonon) spectra, total-energy calculations (from first principles),
and resistivity measurements to determine phase boundaries, may not be mentioned in
the above-mentioned journal.

Calphad, the Zeitschrift fiir Metallkunde (now called the International Journal
of Materials Research), the Journal of Alloys and Compounds, Intermetallics, and
Thermochimica Acta are some of the other journals that often present assessments or
data useful for assessments. The information useful for thermodynamic assessments
is, however, widespread in many other journals, including Physical Review B, the
Philosophical Magazine, Acta Materialia, Metallurgical and Materials Transactions,
Nature Materials, Acta Crystallographica, and Scripta Materialia. These can provide lit-
erature more recent than the critical evaluation of the International Programme for Alloy
Phase Diagram Data. With electronic literature databases used on line, searching for
keywords can provide large lists of references. However, many of them may be irrelevant
for the optimization.

As a rule one should obtain all the original papers. It is very important to check all
the data as they are reported by the original author. Do not use “secondhand” infor-
mation from the author of an assessment, unless it is impossible to order the original
literature.

It may be enlightening to know a story about how important it is to have original data.
In the accepted Fe—Mo phase diagram before 1980 there was a three-phase temperature
for liquid + o+ bcc at 1813 K. This was in several references reported as determined
by Sykes (1926), but the thermodynamic assessment showed that this temperature was
impossible, since the parameters required to get this low three-phase temperature were
absolutely impossible. However, Sykes being a respected experimentalist, it was not
possible just to discard his data and it had been quoted in all references since 1926.
But when the original reference was finally retrieved it was found that he had not really
measured this temperature. He had measured some points on the o + liquid solubility
curve and then extrapolated this to meet the solubility line of o in equilibrium with becc
Mo and put the three-phase temperature where these lines met. The solubility of Fe in o
he had estimated as 50% Mo, but he did not have any experimental data on this solubility;
he had misinterpreted another paper that stated that the solubility limit of the p phase
was 50% Fe, mistaking p for the o phase.

Later the solubility limit of the o phase was measured and a much higher solubility of
Mo, almost 60%, was found. However, in the phase diagram drawn the three-phase line
was not changed; instead a very strange curvature of the solubility curve of o was imposed
in order to fit the accepted three-phase temperature of 1813 K. If those who constructed
this diagram had read the Sykes paper and carried out the same construction as he did, they
would have put the three-phase temperature at a much higher value. In the thermodynamic
assessment this was now done. At the same time some new experimental data above
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1813 K were obtained, showing that o is indeed stable at much higher temperatures, and
the new assessment was confirmed.

Information can be lost. Information can be wrong. Information can have been
misinterpreted by the assessor at the time of his assessments. New experimental results
reported in the literature may invalidate the previous arguments and decisions.

In many cases the originally measured quantity is reported after having been
transformed. For example, enthalpies of mixing are often obtained by dropping a cold
sample into a calorimetric bath (section 4.1.1.1). The reported value is the measured
one minus the enthalpy difference between the cold sample and the sample heated up to
the calorimeter temperature. For this enthalpy difference the numerical value which is
actually used is often not given, but only a reference is cited and the reference may be
ambiguous in evaluating this value. In the dataset to be optimized, however, this enthalpy
difference is already defined and may deviate to some extent from that used by the author.
Then the value used by the author should be replaced by the enthalpy difference defined
by the dataset.

Sometimes the original measurements may contain more information than is
reported in tables or curves. The additional information can, however, often still be
extracted from the reported data, if the experimental method is well described in the
publication.

A useful way to organize the literature is to classify it by the types of the measured
quantities (see chapter 4). A first classification may distinguish among the following.

e  Experimental thermodynamic data.

Here all kinds of enthalpies appear, plus their variations with temperature and
composition (calorimetric data) together with all the experimental data related to
chemical-potential measurements, obtained by emf or vapor-pressure methods.

e  Experimental phase-diagram data.

Phase-diagram data can be obtained by various methods and require careful research.
Thermal analysis, metallography, X-ray diffraction, solidification-path experiments,
microprobe measurements, and use of diffusion couples are the most common
methods.

e  Other experimental data, which have a quantitative relation to thermodynamic
functions: bulk moduli, thermal expansions, elastic constants, etc. All these quantities
are related to derivatives of the Gibbs energy.

e Crystal-structure data, point defects, densities (vacancies), ordering, resistivity,
vibrations, etc. These data are very important in selecting details of the models to be
used for each phase.

e Theoretical papers for calculations of total energies, at zero and/or at finite
temperature, estimates, trends, thermodynamic properties, and phase diagrams of
similar systems. See section 6.2.1.3.

e  Review papers, critical assessments, and previous optimizations.

These papers may contain an optimization that already satisfies all the recommenda-
tions for a good optimization. This means that the work has already been done for
the system in question. If an optimization is not satisfactory, the arguments given in
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that paper may nevertheless be helpful; and they can be a very useful starting point
for an improved description.

e Miscellaneous
Here one can include information that is indirectly connected to Gibbs energies, such
as information on kinetics, microstructure, and solidification. It can be very useful
for checking the use of the assessment in some application.

6.1.2 Analysis of the experimental data

After reading all the literature, one should have a good overview of the system. Already
at this stage some contradictions between different sets of measurements may be detected.
The most obvious contradictions are recognized when different values are reported for
the same quantity, for example contradicting points of a solvus line of a binary system.
In this case at least one of the datasets contains systematic errors and this set must be
excluded from a least-squares fitting unless one can evaluate the error. It is impossible
to give a general rule on how to select the best one of several contradictory sets of
measurements. The descriptions of the experimental procedures must be read carefully
to ascertain where it is more likely that errors could have occurred, like reaction with
the crucible material or with the gas phase, evaporation of a volatile component, or not
reaching equilibrium. Anyway, the arguments deployed to categorize sets of data as more
or less reliable must be clearly specified in the publication of the optimization. It is
possible that later measurements will throw new light on this problem and suggest a new
decision regarding which set of conflicting data should be preferred.

Contradictions between quantities obtained from different experimental methods might
be undetectable before running an optimization, but found after the first trials. Thus the
evaluation of the reliability of the experimental data must be repeated.

For values that are unique to a system, such as temperatures of invariant equilibria
and standard enthalpies of formation of stoichiometric phases, it is recommended that
one select a “best” value for each of these measured or estimated quantities before the
optimization. If several values of the same quantity are used, the least-squares method
can do nothing else but find a mean of the reported values. The selection of the “best”
value can, however, be changed if more information is obtained during the optimization
procedure.

Values depending continuously on a state variable, such as temperature or composition,
should be used for the optimization without prior smoothing or replacement by mean
values. Every smoothing procedure has associated with it the danger of introducing a
subjective preference, which might not agree well with the “reality.”

Measurements excluded from the optimization due to contradictions should not be
totally erased from the computer, but should be plotted together with the accepted
measurements and compared with the result of the optimization.

Ternary phase-diagram data, especially indications of the temperature at which the
second solid phase appears on cooling, must be interpreted with great care since the
composition of the liquid phase will change while it is precipitating the first solid phase.
One may use a Scheil simulation, see Fig. 8.7(b), to check such experimental data.
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Selection of the set of phases to be considered

An important part of the critical assessment is the identification of the phases present in
a system. The liquid phase should always be included, since it is usually stable across
the whole system. The terminal phases are in general not a problem because they are
usually the pure elements themselves, with homogeneity ranges varying from so small
that they can be ignored to extending across the whole system. The identification of the
intermediate phases, however, is not always straightforward. By intermediate phase one
should understand any phase that does not appear as stable for any of the pure elements,
for example intermetallics, oxides, carbides, etc. The early investigations might not have
found all phases or they may have attributed a different composition to a phase. A phase
may be metastable, despite its having been found by all investigators. A well-known
example of a metastable phase is cementite, Fe;C, in the Fe—C system. A metastable phase
such as cementite must be included in the set of phases considered in the optimization of
the Fe—C system.

The existence of a phase is most convincingly confirmed if its crystal structure is
clarified. The most convincing structure determinations are those based on single-crystal
X-ray diffraction. In cases in which the X-ray scattering of different atoms is very similar,
neutron diffraction may give important additional information. If various authors have
assigned different unit cells to the same phase, this is not necessarily a contradiction,
since there may exist a transformation between the two descriptions, although one of
them may have lower symmetry. If just a unit cell is reported, this is less convinc-
ing because it may be due to a misinterpretation of the X-ray pattern of a two-phase
sample. A good fit of X-ray intensities with a proposed crystal structure, however, is
nearly impossible to create artificially from a not-single-phase sample, even though the
crystal structure itself may be refined later. Of course, it must be checked whether the
crystal structure is really proved by X-ray-intensity measurements. Some reported crystal
structures are just concluded from the similarity of the X-ray pattern to that of a known
structure.

The ratio of the numbers of positions of the different atoms belonging to the crystal
structure of a stoichiometric phase can be taken as the best definition of its “ideal”
composition. Often, however, more than one component can enter a sublattice or some
positions may be vacant, then the actual composition is able to deviate significantly from
the “ideal” composition.

Phases formed at lower temperatures are often detected only after longer annealing
times and may be missed in most investigations. On the other hand, phases found only
after rapid quenching are more likely to be metastable. Often that is proved definitively
by transforming them into stable phases by annealing later. Taking all that into account,
in most cases a consistent interpretation is possible.

After the first consideration on compatibility of the data, the optimization steps follow:
the selection of the model for each phase and the decision regarding how many and which
coefficients can be adjusted independently for each of the selected models.

At this level of the assessment it is very useful to produce a table indicating which
kinds of experimental data are known for each phase. Table 6.1 presents a hypothetical set
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Table 6.1 A summary of experimental data on a hypothetical system

Phase Strukturbericht ~ Phase equilibria  u, a H H(T)— H(298K), C,
Liquid 2-phase, 3-phase  w(T), ug(T) H(x)

Phase, Al 2-phase a(x)

Phase; LI, 2-phase ua(T), ug(T) H(x) H(T), 0H/IT
Phase, Cl4 2-phase Heysion(To)

of data organized by type. With this information, one can quickly answer some questions
that are important for the model selection; see section 6.2.9. After the answers have been
obtained, some simple decisions about the model can be made.

Modeling the Gibbs energy for each phase

As has already been mentioned, each phase in a system can be modeled independently,
but, when two or more phases have the same or related crystal structure, they may be
modeled as the same phase. Typical examples are when the terminal phases have the
same crystal structure, or when an intermediate phase is an ordered form of a terminal
phase.

General considerations

The appropriate description for the Gibbs energy of each phase should be selected from
the models described in chapter 5. All the descriptions there are supported by physical
models. Some of the polynomial excess terms, however, are only curve-fitting formulae
to be used for description of small deviations from the model. This is necessary, because
no model is able to take into account all possible physical effects. A model is well chosen
if it has a physical background and experimental values fit the corresponding calculated
quantities well using only a few model parameters.

All models contain simplifications, so it may be useful to add some terms with curve-
fitting behavior summarizing the contributions of minor physical effects, which in detail
might not be well known quantitatively. The contribution of this additional curve-fitting
formula should be small compared with the contribution of the model formula itself.
This problem had been addressed by Didier de Fontaine er al. (1995): “Usually, it
is impossible to treat the problem in a rigorous theoretical manner: even if magnetic
effects would be described by an Ising model, a detailed mathematical treatment would
be out of question as it is known that (a) the three-dimensional Ising model cannot
be treated exactly, even in principle, and (b) finding accurate approximate solutions is
one of the hardest problems in theoretical physics. We are forced, therefore, to adopt
a purely phenomenological approach consisting of optimal fits of experimental data to
an empirical analytical expression. The choice of this mathematical expression should
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not be completely arbitrary, and indeed its form should reflect as much as possible the
essential physics of the problem. If that can be achieved, (a) at least some of the fitting
parameters will have physical meaning and these derived values can be checked against
known experimental information, (b) values of properties of metastable phases can be
predicted with some chance of success.”

Some kinds of experimental data can give good hints about the selection of the model,
in particular data on enthalpies and chemical potentials (activities) in the single-phase
region.

After selecting the model for each phase, the parameters of the model should be
analyzed. General models contain many parameters, and the ones to be used in the specific
modeling of a given phase should be decided considering their physical meaning. Some
models require parameters that cannot be provided by any experimental value; however,
their use is necessary because they are intrinsically related to the model. Some parameters
can be combined by constraints to give a single parameter or fixed arbitrarily to values
that have no significant influence on G in the stability range of existence of the phase.
Some parameters with curve-fitting behavior may be tolerated, but should be restricted
to small deviations from a description based on physically meaningful parameters only.

Extrapolations provided by physically realistic models usually result in better descrip-
tions of regions not covered by experimental data than do extrapolations done using
purely curve-fitting formulae. Extrapolations deviate from reality only moderately for
models based on sound theoretical physics. The more complicated a description, the more
unpredictable the extrapolation if the model is misused as a purely curve-fitting formula.

The modeling of the phases may have to be compatible with existing multicomponent
databases. That reduces the freedom in the selection of models and parameters. If the
arguments in favor of selecting a better model for the phase are strong enough to motivate
a change in the model used in the existing database, the recommended strategy is to
make two assessments, using the different models. This will simplify a future change of
the database.

For each phase one identifies the prototype crystal structure and other known structural
characteristics. It is also important to find phases with the same prototype in other systems,
in particular for intermediate phases. That will be discussed in more detail in section 6.2.5.
The possibility of the extension of a binary to a ternary or higher-order system should
always be taken into account.

Solubility and composition range

The liquid is often stable across the whole composition range. Even if there is a miscibility
gap, the same model should be used on both sides of the miscibility gap for the liquid
phase.

A terminal phase may also extend across the whole composition range if the pure
elements have the same crystal-structure type. If the terminal phases have the same
structure, they must be modeled as the same phase even if there is a miscibility gap
and even if there are stable intermediate phases in between the terminal phases. See
section 6.4.4.
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All phases have some range of solubility, but, if it is small or no experimental data are
available, one may approximate any phase by a stoichiometric compound. However, for
example, in a semiconductor phase it may be important to model a composition range of
mole fraction 10~°, whereas for another type of phase even a solubility of mole fraction
10~* may be insignificant. A stoichiometric compound is much simpler to model than a
phase with a small composition range because in the former case the Gibbs energy is just
a function of temperature and pressure. Fortunately, the phase boundaries of the other
phases in equilibrium with the compound depend very little on the model selected for the
compound, if the model selection is a choice between a stoichiometric phase and a phase
with very small solubility. Thus this modeling can be changed later without significant
influence on parameter values of neighboring phases.

In ternary systems a binary stoichiometric phase may dissolve considerable amounts
of the third component. Then modeling as a line compound is the adequate procedure.
Also terminal phases may be treated as stoichiometric phases, considering the same
criteria. For example, graphite in many systems has no measurable solubility range and
is consequently treated as stoichiometric.

For intermediate phases with small solubility ranges, constituents occupying the same
sublattice are often distinguished as normal (major) constituents or as defects. There are
several models to handle this case, which will be described in section 6.2.5.

Phases with wide solubility ranges may have ordering inside their composition ranges.
This can be inferred from the structure type and determined by measuring the chemical
potential or activity as a function of composition. For example, many intermediate phases
have the B2 structure type and it is very likely that the properties of such a phase will
change rather drastically at the ideal composition even if the phase diagram does not
show any evidence of that. It must be kept in mind that a phase diagram shows only
relations between phases; little can be deduced of the properties of the phases themselves.

In Fig. 6.2 two examples of phase diagrams and their Gibbs-energy curves at a fixed
temperature are shown. In order to become a good assessor, it is important to develop a
feeling for the relations between the Gibbs-energy curves and the phase diagram. Note
that, even if a phase is stable only within a narrow composition range, the model often
defines the Gibbs energy over a much wider range. In Figs. 6.2(c) and (d) these Gibbs
energies are drawn for the whole range of compositions for the model of the phase. The
assessment of the Fe-Mo system is from Ferndndez Guillermet (1982) and that of the
Cu—Zn system from Kowalski and Spencer (1993).

Thermodynamic data

The thermodynamic information for the various phases will be reviewed here mainly
in the context of the type of phase. A few general considerations can be made. If the
enthalpy of mixing versus composition curve deviates from a parabolic shape, for example
by having a sharp “V”-shape for a given composition, then strong LRO or SRO in the
mixture should be expected.

If the enthalpy of formation is measured at several temperatures and no significant
temperature dependence is observed, no excess heat capacity should be modeled, i.e.,
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Figure 6.2 Examples of phase diagrams, (a) Fe-Mo and (b) Cu—Zn, and the Gibbs-energy curves
of their stable phases: (c) Fe-Mo at 1673 K and (d) Cu—Zn at 673 K. Note that the second-order
transition line between bce and B2 in (c) is not shown.

the Kopp—Neumann rule should be used (section 5.2.3). Note that defects or associates
contribute to the heat capacity because their fractions depend on temperature. In a few
cases there exist enough heat-capacity data to enable evaluation of the heat capacity
independently from those of the pure components for a solution phase.

A drastic change of the chemical potentials and the partial enthalpies over a small
composition range indicates an ordering. Ordering can depend on various types of species
and the most important type of species should be identified; it can be vacancies, anti-site
atoms, interstitials, or some combination of all the foregoing. If the phase may disorder
completely, like a B2 phase to A2 or an L1, phase to Al structure type, one should use a
model that describes both the ordered and the disordered state with the same description;
see section 5.8.4.

In Fig. 6.3 four cases of integral and partial molar enthalpies versus mole fraction
curves are shown together with the second derivatives of the excess Gibbs energy. The
first three cases are related to the Redlich—Kister (RK) series described in section 5.6.2.1.
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Figure 6.3 Enthalpies of mixing and d’G,,/dx? calculated for a series of models.

For these figures the excess entropy is set to zero and thus the enthalpy of mixing,
excess enthalpy, and excess Gibbs energy are identical. In the first case the enthalpy
is described by a single RK coefficient; the second derivative is constant. In the sec-
ond case two RK coefficients are used and the second derivative of the excess Gibbs
energy changes linearly with composition. In the third case the first, third, and fifth
RK coefficients are used (sixth degree, symmetrical). The fourth case shows typical
curves of an ordered phase. For comparison with the RK cases also here d’°G,,/dx* of
an ideal solution is subtracted from the calculated d>G,,/dx? in order to get the second
derivative of the “excess Gibbs energy.” In this case the enthalpy and excess Gibbs
energy are different. The quantities H,,, H,, and Hy in this figure were chosen because
they can be measured experimentally; d’G,,/dx? is the “phase stability” introduced by
Eq. (2.17).

The curves of integral and partial enthalpies related to the RK description in Fig. 6.3 are
modeled as temperature-independent. With linearly temperature-dependent RK parameters
they can also be modeled as being temperature-dependent, but the magnitude and shape
change only moderately with temperature. For the ordered phase, however, magnitudes
and shapes of all three curves in Fig. 6.3 strongly depend on temperature. This is shown
by calculating them for two different temperatures, related to the ordering Gibbs energy
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of the phase. This drastic temperature dependence especially of d*G,,/dx? cannot be well
reproduced by a temperature-dependent RK description.

The conclusion from this figure is thus that, for phases for which the H,, versus x
curve at lower temperatures exhibits a sharp kink leading to step-like curves of the partial
enthalpy versus mole fraction plots, the RK formalism is not a good choice; instead, a
model like the Wagner—Schottky model is needed. The associate-solution model and the
partially ionic-liquid model behave similarly and may be alternatively chosen, if they are
better suited for the phase in question.

Estimation methods

If insufficient data are available experimentally, some estimation methods may be useful.
Theoretical approaches and semi-empirical estimates are important in selecting details of
the models to be used for each phase and for reducing the number of adjustable model
parameters. First-principles methods, total energies, and quantum and non-quantum-
mechanical Monte Carlo and molecular-dynamics atomistic calculations can be used to
compute thermodynamic properties useful for estimating model parameters.

Also trends of thermodynamic properties in series of related systems can successfully
be used for estimates, for example along a sequence in the periodic table. Several such
methods for estimating enthalpies of formation are reviewed by P.J. Spencer in a special
issue of Thermochimica Acta dedicated to computational thermodynamics (Spencer 1998).
Another useful source of data is the book by Bakker (1998).

An important estimate is given by the Kopp—Neumann rule for heat capacities (C,)
of compounds (Kopp 1864, Neumann 1865, Grimvall 1999). If there is not enough
information to evaluate both an enthalpy and an entropy value, it is usually better to
set the entropy value proportional to the enthalpy one, like a, = a,/T,, where T, has
been estimated up to 3000 K for excess parameters by Lupis (1967) and Kubaschewski
et al. (1967). This estimation was proposed to depend on the melting temperatures of
the pure components and refined by Tanaka et al. (1996). Estimates for atomic volumes,
the standard entropy, the Lindemann melting rule, and relations between C, and thermal
expansion can be found in the chapter “Estimations and correlations” in Grimvall (1991).

Typical estimates using the position in the periodic table are those of Bakker (1998)
and Miedema et al. (de Boer er al. 1988) for the enthalpy of mixing in the liquid state
and for enthalpies of formation of compounds.

First-principles total-energy calculations, using DFT methods (see chapter 3), even
if done at 0K, can also provide values for the formation enthalpies of real compounds
as well as for fictitious end members in the CEF. Formation enthalpies of several
compounds in different structures are available in databases compiled by Sluiter on
the website (http://www.www-lab.imr.edu/~marcel/enthalpy/enthalp.htm) and by Colinet
(2003). The alloy database prepared by the Widom group is available in a website
(http://alloy.phys.cmu.edu/) and provides also auxiliary values. It is important to keep in
mind that the values provided by first-principles calculations must be assessed critically
because the values depend on the methods and approximations used and they scatter
similarly to how experimental values do.
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Systematic behavior is very useful information in modeling when no experimental data
are known. A comparison with similar but well-known systems can be a good guide in
certain cases (Shao 2001).

The gas phase

The gas phase is normally assessed by techniques different from those described in
this book. Thermodynamic descriptions of gaseous molecules can often be obtained by
ab initio calculations and from spectroscopic data. Several databases with multicomponent
gas data are available, for example from the SGTE (Landolt-Bornstein 1999).

Modeling the liquid phase

The liquid phase usually exists across the whole composition range, but it may change
its type of bonding with composition and temperature. This can be observed in measured
enthalpies of mixing, for example. The type of bonding or the shape and magnitude
of the enthalpy of mixing versus mole fraction curve, ™*H"(x), should be considered
in the modeling. For mainly metallic or van der Waals bonding, which is direction-
independent, the regular solution is usually a good model. A variety of composition-
dependent effects, which do not need to be identified individually, may influence the
energies of the bonds and make them composition-dependent. To fit this behavior, usually
a polynomial (RK) series is used as the curve-fitting formula.

In some phase diagrams one may find very deep eutectics between two intermediate
phases, for example for the Mg—Zn system. It is unusual that the shape of the liquidus
curve differs significantly on the two sides of a congruently melting compound. If such
behavior is experimentally well determined to occur, one has to consider a model in
which 9*G/dx? of the liquid changes rapidly between the two sides, as can be deduced
from the Gibbs—Konovalov rule, Eq. (2.50). Appropriate models are, for example, the
associate solution (5.7.1) and the partially ionic-liquid model (5.9.4).

Miscibility gaps

Liquid oxides are often treated with a model different from that used for the liquid metal
because many metal-oxygen systems have wide miscibility gaps, but it is always possible
to find a continuous path from one side of the miscibility gap to the other in a binary
system by adding a third component. For example, the Cu-S system has a miscibility gap
between a Cu-rich liquid and a liquid with the average composition Cu,S. In the ternary
Cu-Fe-S system, however, the miscibility gap closes and thus a single model must be
used to describe the liquid phase already in the binary Cu-S system.

In some binary phase diagrams the liquidus is almost horizontal for a significant
composition range, for example for the Cu—Fe system. That is an indication of a metastable
liquid miscibility gap just below the liquidus.
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Short-range ordering in liquids

A “V”-shaped enthalpy of mixing versus mole fraction curve is experimental evidence for
SRO and the apex of the “V” indicates the stoichiometry of an “entity” (sometimes called
a molecule or associate, but actually an atomic configuration that appears statistically
more frequently than others) or the ratio of the charges of the ions (compare this with
Fig. 6.3).

In the phase diagram the “V”-shaped enthalpy of mixing curve is often matched by
a congruently melting phase at the same composition. For example, see the Mg—Sn and
Pb-Te phase diagrams in Figs. 6.4(a) and (b), respectively.

If the ™x " (x) curve is less pronouncedly “V”-shaped, several associates or several
different cations or anions may exist (e.g., Fe’*, Fe’*, SiO}~, Al(OH); , and Al(OH); ).
However, if these cannot be well characterized, the RK series may still be sufficient as a
curve-fitting formula.

If the bonding is less pronouncedly covalent or ionic, the “V”-shaped enthalpy may
be an indication of SRO, which can be represented by the quasi-chemical description
(section 5.7.2.1) which has a non-random entropy of mixing. Alternatively, the deviation
of the entropy from that of random mixing may be represented by excess-entropy terms
in the RK formalism. The latter method, however, is a curve-fitting method and does not
describe the excess heat capacity connected with the decrease in enthalpy of formation
due to the decrease of short-range ordering on heating. Usually very little is known about
excess heat capacities for liquids, but some may be deduced from enthalpy-of-mixing
measurements performed at various temperatures.

Freezing-point depression

Another useful item of information for modeling that can be extracted from the phase
diagram is related to the “freezing-point depression.”
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Figure 6.4 Calculated and experimental enthalpies of mixing for (a) Mg—Sn and (b) Pb-Te.
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The width of the two-phase region close to the pure element is determined by the
“van ’t Hoff law,” i.e., the difference in composition is related to the enthalpy of melting
of the pure element. The depression of the melting temperature 7; of pure A on adding
B when there is no solubility of B in pure A is
AH/EA T, — T

. 6.1
RT T, ©.1)

L _
Xg =

This can easily be derived from the equilibrium conditions, see for example Hillert
et al. (1998), p. 270. Equation (6.1) indicates that the freezing-point depression per mole
fraction of addition is independent of the alloying element. If experimental information
for the liquidus reveals a strong deviation from the slope given by Eq. (6.1), it is an
indication that one mole of added element corresponds to a different number of moles of
dissolved species (either one atom creates an additional species, e.g., an ion, or several
dissolved atoms aggregate into a single molecule or associate).

Modeling terminal phases

By terminal phases we mean phases that exist with a pure component of the system. The
solubility ranges of these phases may vary from very limited to extending across the whole
composition range. In most cases it is useful to describe the Gibbs energy of the terminal
phase for the whole composition range even if the real phase has limited solubility.
If the two elements in their stable states have different crystal structures, then the Gibbs
energy of a metastable state (lattice stability) of one of the elements must be related to
that of its stable state. These relationships form a unary database. A first version of it
is included in Dinsdale (1991); there is an update in Landolt-Birnstein (2002). Usually
the unary dataset is provided without charge in the web pages of agencies producing
databases.

Most of the pure elements have an fcc, bee, or hep lattice. Gibbs energies for these
structures are collected in Landolt-Bornstein (2002) for almost all elements. For phases
like graphite and diamond the solubility of other elements is usually very small and often
can be neglected.

Substitutional solutions

Elements that dissolve substitutionally in a terminal phase can often be described with the
RK formalism. If the two elements have the same crystal structure, complete solubility
across the whole composition range may exist (e.g., Cr—V and Ag—Au). In other systems
differences in atomic sizes (Ag—Cu) or in chemical properties create miscibility gaps
or intermediate phases are formed and interrupt the solubility range, as in Cr-Mo and
Fe—Mo. If there are many intermediate phases, one may check the modeling of the
terminal phases during the assessment by calculating the metastable phase diagram with
just the terminal phases (as discussed later in section 6.2.4.4).

In other systems the components may form ordered phases based on the same lattice
as the terminal solution (see section 6.2.4.3).
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Interstitial solutions

The typical case of an interstitial solution is carbon in steels. Iron can be ferritic, i.e., has
a bec lattice, or austenitic, i.e., has an fcc lattice. When carbon is dissolved in steel, it will
not substitute iron on the lattice sites but occupies interstitial sites between the Fe atoms.
In bee there are octahedral interstitial sites in the middle of the edges and additionally
at the centers of the planes of the unit cell and there are three times as many interstitial
sites as matrix atom sites in the bcc lattice. Thus the sublattice model (Fe, Cr, ...),
(Va, C, N);, where Va denotes vacancies, is used.

In fcc there are two kinds of interstitial sites, tetrahedral ones surrounded by four
matrix sites and octahedral ones surrounded by six matrix sites. In a unit cell of fcc
containing four matrix sites, there are eight tetrahedral and four octahedral sites. Carbon
and nitrogen dissolve in the octahedral sites only, so the model used for austenite is thus
(Fe, Cr,...),(Va, C, N),.

The hcp lattice is also very common for metallic phases. There is also one
octahedral interstitial site per matrix atom. Nevertheless, an old modeling with only half
the interstitial sites is still used. There is no significant difference when it is applied to
dilute interstitial solutions, but it performs worse for the cases in which more-concentrated
interstitial solutions are stable (O in Ti, Zr, and Hf). This old description was deduced
from carbides like W, C and Mo, C that were assumed to be strongly ordered. However, for
these carbides the crystal structure is described as 50% of all octahedral sites statistically
occupied by C (Schubert (1964), p. 267).

There may exist intermediate phases that seem to correspond to “full” occupation
of the interstitial sublattice; however, they may be ordered phases, wherein the sym-
metry is diminished and a single Wyckoff position of empty sites of the pure solvent
phase splits into different sites, only one of which is occupied. In the dilute solu-
tion the symmetry cannot yet be diminished and the number of empty sites is the
full number of sites in the Wyckoff position of the pure solvent structure. For dilute
solutions, therefore, this has to be taken as the number of sites of the interstitial
sublattice.

As an example the hexagonal-close-packed (hcp, A3, Mg-type) structure shall be
considered. Its crystal structure can be described as

space group: P6;/mmc

2 metal atoms (Me) in 2(c) (%%%) (%%%

2 octahedral voids (Va,X) in 2(a) (000) (OO%)

By reducing the symmetry, the two-fold site of the octahedral voids can split into two
independent one-fold sites:

space group: P3m1

2 metal atoms (Me) in 2(d) (%%x) %%)'c)
1 octahedral void (Va,X) in 1(a) (000)
1 octahedral void (Va,X) in 1(b) (00%)
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In the Cr,C structure the 2(d) position is occupied by Cr and the 1(a) position by C; the
1(b) remains empty. From the Cr,C structure it was deduced that in hcp only half of the
octahedral voids can be occupied by interstitials and a ratio of 2: 1 was set for the sites
of the matrix and interstitial sublattice, respectively. In dilute solutions, however, that
cannot be true, since the diminution of symmetry on going from space group P6,/mmc
to P3m1 can take place only if enough interstitials are present to interact and expand the
lattice at the 1(a) positions, i.e., if chemical ordering can occur.

Fortunately, this difference is mainly theoretical and the two selections of the sublattice
site ratio in dilute solutions give virtually the same Gibbs energy versus mole fraction (G(x))
curve, if the parameters G};ZEIX differ just by a term RT In(2) in the two descriptions.

Similarly, in the bce (A2, W-type) structure there are three octahedral voids per matrix
atom. After tetragonal distortion, as happens in martensite, one third of these sites is
enlarged, the other two thirds are shrunk. For dilute solutions (ferrite) the ratio 1:3 must
be taken for matrix to interstitial sites. At higher solute concentrations, ordering may
occur (martensite), splitting the interstitial sublattice into two, with one and two sites per
matrix site, respectively. There are also tetrahedral interstitial sites in bce and often it can
be difficult to know which sites are occupied.

The CEF needs a parameter G,,,.y, for the pure solvent and a parameter G,,..x for the
very fictitious case of fully occupied interstitial sites. Interaction parameters "Ly;..y, x may
be used to adjust the composition dependence of the Gibbs-energy description. Where the
homogeneity range is restricted to dilute solutions, the sum Gy..y, + 2", "Ly.va x 1S the
only independently adjustable parameter. If more than one of the terms of this sum are
used, all except one can be chosen arbitrarily. Nevertheless, it may be necessary to use at
least two parameters, since using G,;.x alone may describe the Gibbs energy well in the
range of homogeneity of the phase, but additionally describe another range of stability,
where the phase is not stable in reality. In that case for Gy,.x an arbitrary and large
enough positive value or linear function of 7 is chosen and “Ly,.y, x is used to adjust the
Gibbs energy in the range of homogeneity.

Ordering phenomena

Adding elements to a terminal phase can change its crystal structure. For example, the
site occupation of Al in an Fe bcc lattice can change from random A2 to ordered B2
with addition of Al. This ordering is of “second order” since it appears gradually and
there is no two-phase region between the A2 and B2 phases, as shown in Fig. 6.5. In
the same diagram the ferromagnetic transition is shown; this is also of second order. The
low-temperature D0, phase was not modeled in the dataset used to calculate Fig. 6.5.

For other types of ordering like the ' phase in the Ni—Al system, where the occupancy
of the fcc lattice changes the structure from the disordered Al to the ordered L1, type, the
ordered phase appears as a separate intermediate phase in the phase diagram. However,
as described in section 5.8.4, both the ordered and the disordered phase can be described
by the same Gibbs-energy function.

There are many “families” of structures that are connected by reduction of symmetry
and it is important to have that in mind when selecting models.
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Figure 6.5 The Al-Fe phase diagram with the second-order transition between disordered A2 and
ordered B2 marked by a dotted line. The second-order transition between paramagnetism and
ferromagnetism is marked by a dot-dashed line. Where the two curves meet, there may be a
change to a first-order transition, but that is not included in the dataset used for this diagram.

Metastable extrapolations of terminal phases

When the terminal phases do not extend across the system, either due to a miscibility
gap or due to intermediate phases, it is still interesting to extrapolate the metastable
two-phase field between the liquid and the terminal phases using the assessed parameters.
There should not be any strange curvatures or both maxima and minima of this two-phase
field. If such behavior shows up in the calculation, it is probably due to there being too
many coefficients in the RK series for one or both phases. In Fig. 6.6 the metastable
extrapolation of the terminal phases is shown as dashed curves for the Al-Cr and Fe-Mo
phase diagrams.

These checks by use of metastable diagrams were proposed and done by J.J. van Laar
as early as 1908 (van Laar 1908a, 1908b). His very pioneering works were reviewed
recently by van Emmerik (2005).

These checks were used as standard procedure in the assessments performed by
Larry Kaufman (2002) and Himo Ansara (2001) and are nowadays largely used by con-
structors of multicomponent databases. Some metastable extrapolations can be checked
by experiments such as those done by Perepezko et al. (Perepezko and Wilde 1998).
These results are especially useful for application in microstructure simulations such as of
phase fields, since metastable regions are very often scanned, and the presence of model
artifacts can be very detrimental to the calculations.

Terminal phases in quasibinary systems

A quasibinary system is a system with three components that behaves exactly like a
binary system of two components. A typical case is the mixing of two oxides like MgO
and CaO. The solid phases in this system have the same B1 structure type and the liquid
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Figure 6.6 Metastable extrapolations of terminal phases in two systems: (a) Al-Cr and

(b) Fe-Mo. For the Fe-Mo system the bcc phase should form a continuous solid solution at high
temperature if there were no intermediate phases and there is a metastable miscibility gap at low
temperatures. The latter is indicated by the shape of the liquid/bcc two-phase region.

phase is completely miscible between the oxides, but neither phase has any appreciable
range of solubility in terms of the amount of oxygen. This makes it possible to treat
the MgO-CaO system as a binary one and ignore the phases outside the composition
range defined by the two oxides. For the thermodynamic definition of components, the
condition Ny = Ny, + N¢, reduces the number of independent components to two.

The essential concept for quasibinary systems is that the endpoints of the tie-lines
between the phases must be inside the section defined by the compounds selected as
quasibinary components. One of the phases of a quasibinary system may exist outside this
section, but, if there exists another one also outside, tie-lines between these two phases
usually are not exactly in the section. Then the system may be only approximately a
quasibinary one.

There are many systems that are treated as quasibinaries although they do not have
the tie-lines exactly in the plane. This is, for example, the case when an element may
have several valencies, like Fe. The mixture of the two oxides CaO and FeO is thus not a
quasibinary system since there are always some Fe’" ions present. The CaO—FeO phase
diagram is an isopleth but can be called a “pseudobinary” system since the endpoints of
the tie-lines will be slightly outside the composition plane defined by the compounds.

Since it is not uncommon to assess quasibinary systems and quasiternary systems,
some features of these are discussed below. It is possible that the liquid, or an intermediate
phase, may be stable outside the quasibinary section, but there may be stoichiometry
restrictions such that, in any two-phase equilibrium, only one of the phases can exist
outside the quasibinary section. Such a constraint ensures that there is always one tie-line
between the two phases inside the quasibinary section.

In a calculation using “double-precision” numbers (about 14 significant digits) a
deviation of the mole fraction by 2 x 10~'* from the section is treated as falling outside
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the section. This may give confusing results. To avoid this problem, the quasibinary
system may be calculated not by giving conditions between mole fractions to select the
line of section in the ternary system, but either by defining the quasibinary components
as the two components of a binary system or by selecting another condition in the ternary
system. In many oxide systems defined by three elements, it is sufficient to fix the
chemical potential of O to a moderately negative value. So long as it is not too negative,
no reduction of the oxides will take place and at higher temperatures the calculation will
remain in the quasibinary system until the gas phase appears. In a few cases this method
might be not applicable, but, where it can be used, also systems that are not strictly
quasibinary, but only approximately so, can be calculated.

One may be surprised by how some thermodynamic properties behave in a quasibinary
solution phase. In the Al,0;—Y,0; system the corundum phase is stable throughout the
whole range between the quasibinary components. The physically reasonable modeling
for this solid solution is (AI**,Y?*),(0*"),. If Al,O, and Y,O, are defined as components,
Mo is kept constant (somewhere between —10000 and —100000J mol "), and the activity
of Y,0; in the corundum phase is calculated as a function of the mole fraction of Y,0O;,
one obtains the curve in Fig. 6.7 even if there are no interaction parameters in the model.
For an ideal substitutional model one would expect the activity to be equal to the mole
fraction given by the diagonal, shown as a dashed line, in this figure.

The reason for this is that the activity of Y,0; in phase @ is defined as

03] [ f
ay,o0, = exp[(1y,0, = My,0,)/(RT)] (6.2)

The w-value of a species is the sum of the u-values of the atoms present in the
species. Consequently the activity of the species is the product of the activities of the
atoms contained in the species. Thus the better choice for the quasibinary components
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Figure 6.7 The activity of Y,0; as a function of the mole fraction of Y,0O; for the sublattice
model (ALY),0; without any interaction parameters.
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is AlO, 5 and YO, 5. The chemical potential of Y,0; is twice that of YO, 5 and thus the
activity of Y,0; is the square of the activity of YO, 5. A similar problem would arise if
the species Cu, and Ni, in the Cu—Ni system were defined as components and the activity
of Cu, were plotted against the mole fraction of Cu, for the fcc (Cu, Ni) solid solution.
Of course, in the Cu—Ni system there is no reason for such a definition of components,
but it illustrates the problem.

Modeling intermediate phases

The term “intermediate” phases means all phases that do not extend to the pure compo-
nents of a system. It includes phases with no or little solubility and phases having very
wide ranges of composition. Some of these phases may have the same lattice as is found
also for terminal phases; for example, an intermediate phase with the bcc lattice appears
in the Al (fcc)—Cu (fcc) system. But often the intermediate phases have more complicated
crystal structures. As mentioned several times before, the identification of the structure
type of a phase is the first step in the modeling. Crystallography gives information about
the different sublattices and, by comparing with other phases with the same structure
type, one can obtain important information about the modeling. If a phase with the same
structure type has been modeled already, that is very useful information. However, phases
with the same structure can also have mixing on different sublattices, depending on the
relative sizes of the different atoms.

In some systems many intermetallic phases may have to be considered in the modeling,
for example o, w, and Laves phases. A good review of these can be found in the
proceedings of the 1996 Ringberg workshop (Ansara et al. 1997a).

(Fe,Ni, . ..),o(Cr,Mo,. . .),(Cr, Fe,Ni, Mo, . . .) (6.3)

Even with this simplified model there is a large number of end members that must be
determined from the scattered and insufficient experimental data. As an approximation,
it has been proposed that one should consider the coordination number, i.e., the number
of bonds at each site, and treat those in the first sublattice as being part of an fcc phase
because the atoms there have 12 bonds, those in the second as a bcc phase since they have
14 bonds, and those in the third also as a bcc phase since the number of bonds is about
14, although they are of slightly varying length. (In reality a bcc structure has just eight
nearest neighbors, but the six next-nearest neighbors are at almost the same distance,
making it 14 bonds.) In fcc the six next-nearest neighbors are much further away than
the 12 nearest neighbors. Thus an end member like Fe,,Mo,Ni,, could be estimated as

OG;e:Mo:Ni = IOOG{:CeC +4OG}I\)/T(C) + 16°Gllilclc (64)

One should also consider systems other than the particular one to be modeled, in
order to take into account what will happen when the model is used for higher-order
systems. The same element may dissolve in different sublattices of the same phase when
alloyed with different elements. For example, the o phase can dissolve more V than
considered according to the model above in the Ni—V system. This can be handled by
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considering V to dissolve also in the first sublattice, although that increases the number
of end members.

Some intermediate phases with the structure types L1,, L1,, and DO0,, can all disorder
to the Al structure type; the structure types B2, DO;, L2, etc. can disorder to A2 and
DO0,y; B,y etc. disorder to A3. When an intermediate phase can transform to a disordered
state, it is important to use the same model both for the ordered and for the disordered state
of this phase. The modeling for such cases is described in more detail in section 5.8.4.
For ordered phases derived from bcc, fcc, or hep but with a complicated structure and
which never transform directly into a disordered state, it is recommended that one should
model these phases as different from the disordered phase. A typical example is the DO,,
structure.

Phases with order—disorder transitions are commonly described as a sum of two
Gibbs-energy expressions, one describing the disordered state and depending only on the
mole fractions of the constituents, the other depending on the site fractions describing
the ordering. This partitioning is described in section 5.8.4.2 and, in a slightly modified
way, it can be applied also to phases that never undergo disordering.

Crystal-structure information

The structure information is sometimes too complex to be modeled in detail. If a phase
has four or five sublattices, it may be necessary to reduce this to two or three because
there might not be enough experimental information to determine the necessary model
parameters. The number of parameters for the “end members” of the phase is obtained
by multiplying together the numbers of constituents on each sublattice. There are seldom
enough data to fit more than two end members for a binary phase.

In most compounds two (or more) different atoms occupy crystallographically different
positions and this may give an enthalpy curve with a very sharp minimum at the ideal
composition. In other cases the intermediate phases may be considered as substitutional-
solid solutions, which could have a wide composition range if not limited by other phases.
The crystal structure is again the primary information for the modeling.

The crystal-structure data should also be checked for information on whether a range
of homogeneity is created by anti-site atoms, vacancies, or interstitials.

Good crystal-structure determinations by X-ray diffraction can even identify some
crystallographic positions to be occupied randomly by different atoms and can even
give values of the site fractions of the different constituents on these positions by
Fourier synthesis from the intensities of the various reflections of the X-ray pattern.
An example of such a determination is the paper of Bonhomme and Yvon (1996) on the
Mg, (Y, Mg),Y phase. Also partially occupied sites can be detected and modeled as a
random distribution of atoms and vacancies. Interstitial atoms are also a distribution of
vacancies and atoms on the same sublattice, but here vacancies are the major constituent
and in the ideal compound these sites are not counted (Joubert 2002).

Similarly to the distinction between substitutional and interstitial solid solutions, the
site fractions of vacancies can be determined by pycnometric density measurements
connected with X-ray lattice-parameter measurements. The volume of the unit cell times
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Avogadro’s number divided by the pycnometrically determined volume of one mole of
atoms gives the number of atoms per unit cell. If, within the experimental error, this
is less than the number of sites, the difference must be interpreted as vacancies. The
presence of more atoms than lattice sites must be interpreted as the existence of interstitial
atoms. Thus, if the range of homogeneity of the phase is not too small, it is possible by
use of density measurements combined with X-ray-diffraction data to distinguish whether
the deviation from ideal stoichiometry is due to the formation of anti-structure atoms,
vacancies, or interstitial atoms.

In some cases, if the atomic volumes are very different, a solid solution may be formed
by pairs of small atoms randomly replacing the large atoms. This happens in the TbCu,
structure type (Buschow and van der Goot 1971), which is the CaCus type with 85% of
the Ca positions occupied by Tb atoms and 15% by pairs of Cu atoms.

If the composition dependence of density or lattice parameters is not available, the
type of solution to be modeled has to be selected by estimation, considerations involving
atomic volumes, or comparison with similar phases.

In modeling sublattices after the crystal structure has been determined, all sites of a
set of equivalent positions have to be treated equally. This excludes a modeling in which
only one site of a three- or four-fold position can be substituted. The only exception is
when a group of atoms can be considered as a single molecule.

In any other case, when a description treats atoms of equivalent positions to be in
different sublattices, it may facilitate reproduction of the experimentally observed range
of homogeneity, but the crystallographic interpretation of the sublattice is totally lost.
Therefore such a “modeling” would be a misuse of a formalism, using it as a mere
curve-fitting formula with physically meaningless coefficients.

The crystal structure gives the ideal occupancy for a stoichiometric compound and
might not describe the stable composition range, even if the crystallographic information
indicates that there is mixing on several sublattices. If the stable composition range
is wide, one may have to consider constituents in other sublattices rather than ideal
occupation by this constituent. Information from the same phase in other systems may
provide information about the mixing on the sublattices. See for example the modeling
of the | phase discussed in Ansara et al. (1997a) and Joubert and Feutelais (2002).

Compatibility with models used in databases

The model for the o phase recommended by Ansara et al. (1997a) and adopted in this
book distinguishes the five different Wyckoff positions as three different sublattices with
10 (842), 4, and 16 (8 + 8) sites, respectively. See also the case study in section 9.3. This
recommendation is based on the coordinations of the five Wyckoff positions. In order
to describe the whole composition range of o without considering Cr and V on all
sublattices, a model for the o phase with 8, 4, and 18 (8 + 8 +2) sites is frequently used
in databases. In new assessments one should use the recommended model, but it may
be necessary to fit also the old model for the sake of backward compatibility. When a
sufficient number of revised assessments is available, it may become possible to remove
the old model of the o phase.
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One should always consider how the phase extrapolates into higher-order systems.
This may demand the use of more sublattices or consideration of more constituents in a
sublattice than needed for a particular binary system. For example, the Laves phase C15
can dissolve Cr in the second sublattice in HfCr, and Cr in the first sublattice in CrTa,. In
the ternary Cr—Hf-Ta system one thus has to model Cr on both sublattices and therefore
it should be included in the binary assessments.

Thermodynamic information

The heat capacity of a compound for which there are no measurements can be estimated by
applying the Kopp—Neumann rule, see section 5.2.3, that it is the stoichiometric average
of the heat capacities of the pure elements.

The coefficients g; in Eq. (5.2) describe the heat capacity. They can be adjusted only if
the heat content H(T') — H(298 K) or the heat capacity C, (section 4.1.1.2) has been mea-
sured. However, heat-content measurements allow maximal adjustment of a, and a;. The
coefficients ay, as, etc. can be only determined by C, measurements. The only alternative
is to use semi-empirical estimates, for example after Kubaschewski and Unal (1977).
Chase et al. (1995) recently proposed expressing C, by the adjustable linear function
a, —2a,T and the Debye function, characterized by the Debye temperature . Instead
of the Debye function, the Einstein function, characterized by the Einstein temperature
O, may be used. Equation (5.2) does not enable one to calculate Debye or Einstein
functions, but, since Calphad-type calculations are meaningful only at temperatures at
which reactions toward equilibrium are possible, only the transition from the Debye or
Einstein function to the Dulong—Petit function is of interest. This can be expressed by the
term asT~'. Low-temperature heat-capacity measurements are of interest when integrated
to standard entropies.

In some cases there are peculiar shapes of the heat-capacity data. This can be due
to magnetic transformations, see Fig. 5.3(a), a drastic change of constituent fractions,
see Fig. 9.8(b), later, or some internal order—disorder transformation. Another common
feature is that the heat capacity of a compound increases drastically just before it melts.
This increase of heat capacity is often due to the formation of small amounts of liquid in
the sample, so such data should not be included in the model of the compound.

Further thermodynamic data besides heat capacities are measurements of the enthalpy
of formation at 298.15K, H,y, and calculations of standard entropies S,o3 from low-
temperature heat-capacity data. Entropies can be fitted independently of heat capacities
also to phase-diagram data.

Even if there are no measured values for some thermodynamic quantities, one must
check explicitly that the assessed values are reasonable, since it is possible to have good
fit to all experimental data but still unphysical values of heat capacities, for example. Both
the heat capacity and S,¢5 of a compound must always be positive. It is possible to obtain
a very good description of all experimental data in a system but still have the wrong
value of S,4s. For example, an assessment of all data on the Al-B system (Ansara 1998b)
gave a nice phase diagram, but for the compound AIB, there resulted a negative value of
Syos = —1.79 Tmol 'K ~"'. This was corrected in a reassessment by Mirkovic ez al. (2004).
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Further thermodynamic information may be based on chemical potentials determined
by emf or vapor-pressure measurements. This information is more similar to phase-
diagram data. Thus its value as supplement to phase-diagram data is not as great as that
of enthalpy data.

Stoichiometric phases

For stoichiometric phases a Gibbs-energy function like Eq. (5.2) can be adjusted to the
available experimental data. If the phase is magnetic, additional parameters are needed.
If the Gibbs energy of a phase is determined only in a narrow range of temperatures and
no enthalpy values are measured, for the Gibbs energy AG = AH — T - AS only a single
coefficient or a single (linear) combination of coefficients can be adjusted.

One of the two coefficients AH and AS (a, and —a, in Eq. (5.2)) may be estimated,
for example by setting AS proportional to AH, an empirical correlation first proposed by
Lupis (1967) and Kubaschewski et al. (1967) and later refined by Tanaka et al. (1990).
For a stoichiometric phase ® = A, B,, partial Gibbs-energy measurements in a special
case are equivalent to a direct measurement of its integral molar Gibbs energy. If the
phase is in equilibrium with one of the elements (A) in nearly pure state, the partial
Gibbs energy p, =0 and, from the condition G5 =m-p, +n-uy it follows that
GAB1 =n- uy. The molar Gibbs energy here is defined for one mole of A, B,, i.e., m+n
moles of atoms of .

n?

The Wagner—Schottky model

The Wagner—Schottky model (Wagner and Schottky 1930, Wagner 1952) was the first
model using the crystallographic positions of different atoms in sublattices. It was devel-
oped for binary intermediate phases with small homogeneity ranges. The “ideal phase”
is defined to have on each sublattice only one occupant. In the real phase there are
also defects on the sublattices. The Wagner—Schottky model contains the following
simplifications.

1. The defects are always so dilute that interactions between them can be neglected and
the Gibbs energy of formation of the defects inside the stability range can be treated
as independent of composition.

2. On both sides of stoichiometry the defect with lowest Gibbs energy of formation is
the only one considered from among the three types (anti-structure atoms, vacancies,
and interstitials), since the others will exist only in smaller amounts at equilibrium
and thus can be neglected.

3. Random mixing of the constituents, separately on each sublattice, is assumed.

As always, one should consider crystallographic information when using this model,
as described in section 5.8.2.3.

The CEF may be interpreted as a generalization of the Wagner—Schottky model,
dropping the first two of the three conditions above. Libowitz (1971) was the first to use
interaction parameters in the Wagner—Schottky model.
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Phases with order—disorder transformations

The structure type of an intermediate phase may be an ordered form of the bcc, fcc,
or hep lattice. In some cases the disordered phase is also stable in the system, but in
other cases only the ordered form exists as a stable phase. Even if the phase does not
undergo disordering inside the binary system, this may happen in a ternary or higher-order
system, so one should use a model that can describe the order—disorder transition. See
section 5.8.4 for more information.

Carbides and nitrides

Two important kinds of carbides and nitrides were described in section 6.2.4.2, the “MC”
and “M2C” types, which can be modeled in the same way as an interstitial solution of
carbon or nitrogen in fcc and hcp, respectively. There are many other phases having
preferred sites for different kinds of atoms. If the atoms are very different, like metal and
non-metal atoms, they usually keep strictly to their respective sublattices, but sometimes
there is more than one type of sites for the metallic elements. For example, in the “M23C6
carbide,” of which Cr,;C is the prototype, two of the metal sites can accommodate bigger
atoms more easily. These sites are preferred by W and Mo and it is almost impossible to
dissolve more W or Mo than can be accommodated by these two sites. A model for this
phase is thus

(Cr,Fe,...), (Cr,Fe,Mo,W,...),Cq (6.5)

This gives a maximum solubility of W and Mo and the parameter °G}%, - for the “end
member” Cr,W,C, can be used to determine the actual solubility of W. In this model
Fe is considered to enter all metallic sublattices. The phase diagram in Fig. 6.8 for the

ﬁ 0 0.2 0.4 0.6 0.8 1.0
Mole fraction C

Figure 6.8 A ternary isothermal section of the Fe—Cr—C system at 1000°C showing the large
solubility of Fe in the M23 and M7 carbides. Note that cementite, which is metastable in the
binary Fe—C system, is stable in the ternary system.
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C—Cr-Fe system shows that the M23 carbide can dissolve considerable amounts of Fe,
which makes it easy to determine the parameter °GNz, - for the metastable “end member”
Fe,;C,. The model contains two additional end members, Cr,, Fe,C, and Fe,, Cr,C¢, which
represent compositions inside the stability range of the phase and thus behave almost
like interaction parameters in the model. The experimental information is usually not
sufficient to determine individual values for all these parameters, so often their enthalpies
of formation are set equal.

Ionic crystalline phases

For phases with strongly ionic behavior, mainly oxides, sulfides, chlorides, etc., the
compounds often have no compositional variation. The reason for this is that the elements
usually have fixed values of their valencies and the phase must remain electrically neutral.
A variation in composition is usually due to vacancy formation and to the fact that
some elements may have multiple valencies. One example of this is the wustite phase
in the Fe-O system: Fe can have two valencies, +2 or +3. In the wustite phase the
oxygen ions form a cubic-close-packed (fcc) lattice with the iron ions in the octahedral
interstitial sites. The model used for wustite in an assessment by Sundman (1991a)
is (Fe’*, Fe’",Va),(0>"),. The vacancies are necessary in order to keep the phase
electrically neutral.

Another more complicated case is the spinel phase, see Fig. 6.9(b). In the MgO-
Al,O, system the ideal stoichiometry is Al,MgO,. In this structure the O*>~ ions form a
cubic-close-packed (fcc) lattice; the AI’* ions occupy half of the octahedral interstitial
sites and the Mg®" ions occupy one eighth of the available tetrahedral interstitial sites.
However, both Al and Mg can be at the “wrong” sites. If some AI’* ions according to the
ideal formula are replaced by Mg”", the electro-neutrality condition requires additionally

(@) (b)

Figure 6.9 The C15 Laves phase (a) and H1, spinel (b) structures. From the Crystal Lattice
Structures web page (http://cst-www.nrl.navy.mil/lattice).
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AlVa

MgVa

AlMg AIAI

A MgMg MgAI

Figure 6.10 A prism representing the end members of the spinel phase. The small triangle,
shaded gray, inside the prism represents all possible neutral combinations of constituents.

the occupation of some of the remaining octahedral interstitial sites. A model used by
Hallstedt (1992) is

(Mg™", AF), (AF", Mg™", Va),(Va, Mg*"),(0*), (6.6)

The model for the spinel, without the third interstitial sublattice, can be visualized as
the prism in Fig. 6.10. The front triangle represents all combinations of Mg®" in the first
sublattice with all three constituents of the second sublattice; the rear triangle represents
all combinations of AI** in the first sublattice with all three constituents in the second.
The small triangle inside the prism marked with symbols at the endpoints represents the
neutral combination of the constituents. The front corner of this triangle is the “normal”
spinel. The point on the bottom line of the rear triangle represents the “inverse” spinel,
which is found e.g., in magnetite (Fe;O,). The point on the sloping side of the rear
triangle represents the structure known as y-alumina.

The vacancies on the second sublattice are necessary in order to maintain
electro-neutrality when the spinel is off stoichiometry by virtue of the presence of excess
APP". The third sublattice is mainly vacant. In principle both Mgt and AI’" ions should
be considered on this sublattice. Since their site fractions remain very small, a valid sim-
plification is to consider only one kind of ions. There are 12 end members in this model,
most of which are charged. Only six electro-neutral combinations of these end members
can be assessed. Thus six of the charged end members can be chosen arbitrarily and the
six others used to define the six independent electro-neutral combinations. The number
of independent parameters shall be further reduced to enable their evaluation from the
available experimental information. If the third sublattice is ignored, three independent
reciprocal relations can be written as below:

Al': Al" +Mg' :Mg" = Mg : Al" +Al' : Mg”
Al':Mg" +Mg' : Va”" = Mg’ :Mg” +Al' : Va’

Al': Va"+Mg' : Al” = Mg': Va” + Al : Al”
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A reasonable estimate is to assume that the reciprocal reactions should have zero
AG because the mean occupation on each sublattice remains unchanged during these
reactions. This reduces the number of parameters to be optimized by three. The reciprocal
reactions are represented by the square surfaces of the prism in Fig. 6.10. There are
three such surfaces characterized by the triangle sides Al"-Mg”, Mg"—Va”, and Va"-Al".
The remaining three parameters can now be attributed to the normal spinel (Mg’ : Al"),
the inverse spinel (Al : Mg” + Al : Al”)/2 and the y-alumina (5A1 : Al” + Al : Va") /6.
The vy-alumina parameter serves also as end member for deviations from stoichiometry
caused by excess Al,O;.

If the third sublattice is assumed to be occupied by Mg**, one can draw a similar prism.
A reasonable estimate for simplification may be to relate all six end members of this prism
to the corresponding ones of the prism for Va” (vacancies on the third sublattice) by
adding the same value, which must be large and positive in order to model the difficulty
of occupation of this sublattice due to the narrowing caused by the atoms of the first
sublattice. This prism itself does not contain any electro-neutral combination of end
members, but the combination (Mg’ : Mg" : Mg"” +Mg' : Mg” : Va”’)/2 is electro-neutral
and independent of the already-defined three electro-neutral end-member combinations.
It serves well as end member for deviations from stoichiometry caused by excess Mg ™.
There are many papers on modeling ionic phases, for example Liang et al. (2001),
Gueneau et al. (2002), and Grundy et al. (2006).

Semiconductor compounds

There is no doubt that a thermodynamic database for semiconductor materials will be
very useful for the future development of electronic devices. Simulating the combination
of different elements to optimize the properties on the computer is much simpler than the
normal trial-and-error method.

The most commonly used semiconducting phases have the diamond (A4) or the
zincblende (B3) structure type. These have the same atomic positions, but A4 belongs to
the higher-symmetry space group Fd3m, for which all sites belong to the same Wyckoff
position, (8a), whereas in B3, space group F43m, these sites form two different Wyckoff
positions, (4a) and (4c). The B3 compounds consist of nearly perfectly ordered compounds
from the third and fifth groups of the periodic table or from the second and sixth groups.
Deviations from the ordering of magnitude 1077 to 107 can be treated as defects by
the Wagner—Schottky model. If the number of electrons of the defect species deviates
from that of the matrix atom, the defect works as doping. To compensate for its electric
charge either a nearly free electron or an electron hole (a missing electron in an ideally
completely filled electron band) is formed. These electrons or holes obey the Fermi—Dirac
statistics and do not contribute to a mixing enthalpy as in Eq. (2.11). Thus, in the CEF,
they must not be treated with extra sublattices; see section 5.10.2.

To find the best routes for the production of B3-phase semiconductors, phase-diagram
calculations regarding solid solutions of group-3 elements on one sublattice or of group-5
atoms on the other one are very important. Owing to the strongly directed bonding of these
phases, the diffusion rate is extremely slow and it is nearly impossible to homogenize the
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material by annealing once it has crystallized. Thus, for growing single crystals or epitaxial
films from liquid, the composition of the liquid has to be chosen to be in equilibrium with
the desired composition of the material to be grown. Several databases for the group-3
and group-5 semiconductors have been published, of which the most complete is that of
Ansara et al. (1994). A model for treating the variation in stoichiometry as well as the
holes and electrons has been used by Chen ef al. (1998).

Phases with miscibility gaps

The simplest kind of miscibility gap is when a phase appears on both sides of a two-
phase region in a binary system. Normally the miscibility gap closes at a high enough
temperature, where the configurational entropy will dominate, but that may be higher than
the temperature at which one can obtain any measurements. The term “composition set”
with a number will be used to identify the two different instances of the same phase. The
concept of a composition set can be extended to cases that normally are not considered
as miscibility gaps, but still have the same phase appearing with different compositions
at the same equilibrium. This happens in many cases of ordering if the disordered and
ordered forms are described as a single phase. For example, the structure types Al, L1,,
and L1, can be described with a single Gibbs-energy function and treated as a single
phase. The different ordered forms can be treated as “composition sets” and can appear
in equilibrium with each other, and this is a kind of miscibility gap.

In many cases one may have the same terminal phases in a system, but no continuous
solution because there are stable compounds in between. However, if the compounds are
excluded from the calculation, the terminal phase may have a metastable miscibility gap.

A miscibility gap can be described with the parameters of a single phase. At the
beginning of an assessment it may be useful to try to fit the parameters that describe
this gap together with the thermodynamic information before involving parameters from
more phases.

A miscibility gap results from a positive interaction between the components, but can
also occur in an ideal reciprocal system; see section 5.8.1.2.

During an optimization it may happen that miscibility gaps appear where there should
not be any; a common feature is that there are “inverted” miscibility gaps at high
temperature in the liquid. This may sometimes be difficult to detect, but, at the end of
an assessment, one should calculate across the whole compositon range at a sufficiently
high temperature, at least 4000 K, to ensure that no solid phases reappear and that there
are no miscibility gaps.

It is possible to include a check on miscibility gaps during the assessment in the
PARROT software; see section 7.3.10. The stability function for a phase, called QF, can
be checked after calculating an equilibrium at some temperatures and compositions. If QF
returns a negative value, the equilibrium is inside the spinodal.

Hume-Rothery phases

There is a class of phases with which the Calphad method still has some difficulties,
namely the Hume-Rothery phases. For such a phase, the Gibbs energy has a significant



6.2 Modeling the Gibbs energy 191

contribution from the energy of the electron gas, which is part of the metallic bonding.
The interpretation of this contribution by Hume-Rothery (Hume-Rothery et al. 1969) is
described here, following a model proposed by Mott and Jones, but it should be remem-
bered that this work was done before the establishment of the DFT and can be reinterpreted
after systematic calculations of the density of states using the quantum-mechanical meth-
ods available nowadays. For a recent discussion on Hume-Rothery phases, see Paxton
et al. (1997) and Mizutani et al. (2006).

Following Hume-Rothery, this electron gas is modeled as nearly free electrons, obeying
Fermi—Dirac statistics, so that two electrons can never have identical quantum numbers
simultaneously for all states. The electrons form stationary waves in the metal, for which
the quantum numbers can be represented by a lattice in reciprocal space. The energy
of the electrons increases with the quantum numbers. The lattice in reciprocal space is
filled starting from the states with lowest energies. The highest energy of occupied states
is called the Fermi energy. The corresponding quantum states in reciprocal space form
the Fermi surface. The wavelength of the stationary waves belonging to states near the
Fermi energy is of the same magnitude as the period of the crystal-structure lattice. This
is visualized in reciprocal space by the “Brillouin zones.” The number of quantum states
versus the energy of the electrons, called the density of states, exhibits discontinuities
where the Fermi surface touches Brillouin zones.

If in a phase for example a Cu atom is replaced by a Zn atom, one additional electron
is added to the electron gas, which contributes proportionally to the Fermi energy to the
derivative dH/dx. The change of the Fermi energy versus number of electrons added is the
reciprocal of the density of states. Thus the contribution of electrons added to the enthalpy
H is proportional to ([ DOS™'dx?, where DOS is the density of states and x is the
valence-electron concentration (VEC), the number of electrons per atom in the electron
gas. The VEC is a linear combination of the mole fractions of the elements constituting
the phase.

The simplest model, called the rigid-band model, assumes the density of states to be
independent of composition. This simplification is too crude, but it may be taken as a
first approximation. The most important feature of this model is that the discontinuities
of the DOS versus VEC prevent this contribution to H being represented well by a
polynomial. Thus the RK formalism necessarily has limited accuracy for this class of
phases. Furthermore, for the extrapolation to ternary and higher-order systems one has
to use the VEC as a single composition variable rather than Muggianu’s formalism.
This statement is valid only for the electron-gas contribution to the enthalpy H. Con-
tributions from other sources may be described well by the Redlich—Kister—Muggianu
formalism.

For successful use of this consideration in modeling G, first-principles calculations of
the density of states are desirable and some ideas regarding how to simplify the results
into a formalism that can be handled by the Calphad method without significant loss of
accuracy have been proposed. The contribution of the electron gas to G may be identified
with that to H since, due to the Fermi—Dirac statistics, the contribution of —7§ is very
small. A manageable simplified description is needed in order to describe how the density
of states depends on the phase composition (Mizutani et al. 2006).
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6.2.9 A summary of phase-model selection

6.3

6.3.1

For Table 6.1, even without knowing details of the shape of the measured quantities, one
can already make some decisions about the modeling, for example the following.

Phase, and Phase; should be modeled by a single Gibbs energy.
There are no enthalpy-of-formation data for Phase,; therefore, a measurement, an
estimate, or a first-principles calculation for that quantity should be sought.

e  For Phase, a constraint relating H and S should be imposed because there are not
enough data for modeling H and § independently for a solution phase.

e  Phase, is well studied and C » can be modeled; however, since the heat content was
also measured, one can test for conflicts between these two sets of data.

To restrict the kind of model and the number of independent coefficients allowed by
the amount of experimental data further, one should consider Table 6.2.
More details of the parameter selection follow in the next section.

Determining adjustable parameters

The CEF formalism described in chapter 5 is very versatile and contains many adjustable
parameters, but only some of them can be used in an assessment, depending on the
available experimental data. Certain considerations and estimates should be used in order
to decrease the number of independently adjusted parameters either by fixing some
parameters to constant values or by setting constraints relating two or more parameters,
thus expressing them all by a single parameter.

Selecting parameters

In adjusting a thermodynamic description to experimental values, the final value of
each adjustable coefficient depends on many of the diverse measurements and each
measured value contributes to many of the coefficients. The advantage of the least-
squares method is that these influences need not be known quantitatively, since the
strategy of the method is to select the best possible agreement of all the coefficients
and all the experimental values as described in section 2.4. Many of the coefficients of
the descriptions, however, are not able to improve the fit between measurements and
descriptions significantly. Using them may lead the calculation to follow just the scatter of
the experimental values, creating maxima and minima where a smooth line is physically
more plausible.

To judge whether a certain coefficient is well defined by the available set of measured
values, the effect of each coefficient on the shapes of calculated curves should be known at
least qualitatively. It must be discussed for each coefficient, if its influence on the shapes
of calculated functions really is necessary to improve the fit between calculation results
and the experimental dataset. In the following paragraphs some general considerations for
this check are given. Among the examples given in chapter 9, this check is described in
detail for some systems.
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Reducing the number of parameters

The analysis of experimental data does not always make evident whether a certain
parameter is related to the available experimental data. This can be found out by applying
a least-squares method twice, with and without the coefficient. Comparison of the two
results makes a decision possible in most cases. It is recommended that one start the
assessment with as few coefficients as possible and then include additional coefficients
as necessary. A systematic misfit between some series of experimental points and the
corresponding calculated curve usually gives enough hints to clarify which coefficients
should be added. If a coefficient is not defined well enough, it usually does not show up
in the comparison of measured values and calculated curves. It may, however, have a bad
influence on the behavior of the extrapolation of the calculation into areas not covered
by experiments.

Constraining parameters

For phases with several sublattices and several constituents on each, there are many
reciprocal relations, as described in section 5.8.1. If there is not enough information,
taking into account also crystallographic symmetries, to determine each end member of
a reciprocal relation independently, a possible method is to assume that the reciprocal
energy is zero. If three end members of a reciprocal relation are known, this assumption
makes it possible to fix the fourth from Eq. (5.100). For cases in which there are several
possible reciprocal relations, the order in which one should select these has been suggested
by Hillert (1997b).

For intermediate phases with a homogeneity range, there often exists an “ideal” com-
position for which each sublattice is occupied by a single constituent only, equivalent
to an “end member.” In order to model the homogeneity range, one needs information
about the kind of defects causing the deviation from ideality. Possible types of defects
are anti-site atoms, interstitials, vacancies, and several kinds of defects simultaneously.
When optimizing the properties of the phase, one should first optimize the parameter
that describes the ideal composition, i.e., a single end member. If the homogeneity range
is small, modeling this end member first as a stoichiometric phase often facilitates the
optimization. If this description converges, it is fixed and the parameters that determine
the deviation from the ideal stoichiometry are added and assessed. Finally, all parameters
are made adjustable again and assessed simultaneously in the final calculation step. This
procedure in most cases prevents large jumps of the parameters in the first calculation
steps, which may lead to a parameter set in which the opposite occupation of sublattices
appears to be the more stable one. When a reasonable fit has been obtained with the
available data, but more than one independent defect structure is defined for the phase in
question, one may start varying also the parameters that determine the relative fractions
of these defects.

When there are many end members of a phase, little or no thermodynamic information,
and no data on the actual occupancy, one may reduce the number of optimizing variables
by assuming the same entropy and heat capacity for all the end members. In some cases,
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it may suffice to set an end-member parameter equal to its “Kopp—Neumann” value like
in Eq. (5.39).
Setting an end-member parameter equal to zero is a very bad estimate.

Coefficients in the Redlich-Kister series

In solutions for which the RK formalism gives a good description of the Gibbs energy
(sections 6.2.3 and 6.2.4), the question of how many coefficients "L of Eq. (5.65) can
be independently adjusted arises, or, what is the maximal power v of the series? The
composition variations of G, due to the various coefficients are shown in Fig. 5.10.

The simplest case is a dilute solution starting from one of the pure components. Here
Henry’s law describing an ideal solution (Eq. (5.42)) between the pure solvent and a
fictive state of the solute expressed by °Gy — Hy™® may be applied. However, °Gp — H3™®
is formally a unary parameter, which must be the same in several binary systems and
cannot be fitted to a particular binary system. Then the Henrian solution is described
as a regular or quasiregular solution with a single coefficient °L, y in Eq. (5.65). If the
solution is dilute, only the sum °Gy — H3™ +°L, ; is significant. If the coefficient °L,
has to be adjusted then whether it should be treated as a constant (regular solution)
or as a linear function of temperature (quasiregular) depends on the experimental
information.

Measured solubilities in an extended temperature range or independent measurements
of a solubility at one temperature and an enthalpy of solution allow the independent
adjustment of two coefficients, a,, and a,, of °L, y = ay+a, - T. If, however, the solubility
is known in a narrow temperature range only and no enthalpy of solution (mixing) is
available, only one coefficient should be adjusted independently. Then either a, is set
zero or it is set proportional to a,: a; = a,/T,, where T, is estimated to be 3000 K by
Lupis (1967) and Kubaschewski er al. (1967). This estimation was proposed to depend
on the melting temperatures of the pure components and refined by Tanaka et al. (1996).

For some systems there may be enough experimental information to adjust two or
three RK coefficients for one of the solution phases in a system, for example the liquid.
Even if there is little or no information except phase-diagram data on the other solution
phases in the system, one may find it necessary to use the same number of coefficients
for the other solution phases as for the liquid in order to obtain a good description.

Decisions to be made during the assessment

The use of software to optimize the system can be divided into two steps. The first is
to get a set of parameters that can roughly reproduce the main features of the data. The
second step is fine-tuning the parameters to the selected data.

Steps to obtain a first set of parameters

An experienced assessor may be able to guess parameter values for the models that
can be used to calculate a phase diagram in reasonable agreement with the critical
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dataset. For beginners, however, guessing the first set of parameters is usually a very
big problem.

Most types of software require that one can calculate the experimental equilibrium in
order to compare the measured quantity with the corresponding quantity calculated from
the model. If all parameters are initially zero, that is usually not possible (the reason for
this is explained in section 7.1.1).

In the BINGSS software there is an option IVERS=3 that does not require a full
equilibrium calculation to compare the model value with the experimental one; see
section 7.2.4. In the PARROT software the same feature is called ALTERNATE mode
and is described in section 7.3.7.3.

Contradiction between experiments
Experimental data of the same kind

When one has several measurements of the same quantity by various authors, one may
sometimes find that their results are so scattered that one cannot fit them all. If all
possibilities of systematic errors, impure samples, bad calibration, etc. have been checked
but the differences remain, the assessor must decide which data are not to be used.
It is not advisable to include several contradicting values of the same quantity, since the
least-squares method will just fit the mean value. This initial selection may have to be
reconsidered later during the assessment when the fit to other kinds of data may have
clarified that the originally selected value is less compatible with these other data than
the rejected one.

Experimental data of different kinds

After the selection of the models and obtaining a first set of parameters by running
the optimizing program, it may be found that some sets of experimental data cannot be
fitted simultaneously. This can be detected by excluding the suspected datasets one by
one and checking whether the fit of the non-excluded datasets improves. Which dataset
finally should be excluded is up to the judgment of the assessor, who should consider the
estimated accuracy of the datasets and the overall fit to other data.

Before excluding a set of data, one should analyze carefully the original paper and look
for a possible reason why the experimental result does not describe the physical reality.
The reason behind the contradiction between different types of data is seldom evident. In
order to understand the problem, one can use some rules like the Gibbs—Konovalov rule,
Eq. (2.50).

There are cases in which different kinds of data provide the same information, for
example when the liquidus, chemical potentials, and enthalpy of mixing of the liquid
phase are known. A conflict may be found in that the value of the entropy obtained
by combining the enthalpy and the liquidus data and that obtained by combining the
chemical potential and enthapy data may be contradictory. In this case, the entropy is
overdefined. Some action should be taken to use the combinations separately, observing
the results obtained.
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To determine that datasets are really in contradiction one should question the assumed
model. The main question is the following: is there a model that will cope with the
different sets of data? This question is usually difficult to answer.

Weighting of experiments

The least-squares minimization in Eq. (2.53) can be affected by selecting different
weightings for the experimental data. The uncertainty assigned to each piece of experi-
mental data is the first level of weighting, since an experimental result with a very small
uncertainty will force the optimizer to try to fit this result well. The uncertainty should
never be adjusted during an optimization; one should use the value provided by the
experimentalist, with a reasonable amount of skepticism.

If some important data are not fitted well during the optimization, one must first
reconsider the model and the parameters selected for it. For example, an asymmetrical
miscibility gap requires at least two RK coefficients. Increasing the weighting of the
experimental data will not improve the fit if only a regular parameter is used.

It is also possible that the parameter set has become stuck in a local minimum, such
that it may help to change the parameters drastically, even change signs, in order to try
to reach a global mimimum. This may make it difficult to calculate some, or all, of the
experimental points and one may have to use again the technique provided for bad initial
values; see section 7.1.1.

However, if the model and model parameters are reasonable, one may increase the
weighting of data from the most important experiments. That will necessarily make the fit
to data from other experiments less good and it is not reasonable to increase all weightings.
In the PARROT software, see section 7.3.10, one may also adjust the weightings to give
equal importance to a few phase-diagram points if one has much thermochemical data.

Phases appearing where they should not or missing from where
they should appear

Terminal phases with small composition ranges or intermediate phases may sometimes
appear to be stable in parts of the phase diagram where they are not stable. This can
be checked only by calculating the whole diagram with all phases for the current set of
parameters. Such calculations should be done regularly during the assessment in order to
discover such problems as early as possible.

Some such cases can easily be avoided. If the artificial appearance of a phase is at
temperatures far above its real stability range, it may be sufficient to set a breakpoint
in the description of the temperature dependence of one or more of the end members of
the phase and continue with constant C PR i.e., without terms containing T?, T3, or even
higher powers of 7. Outside the stability range of the phase, high powers of 7" may lead
to extremely unphysical C, descriptions. In a few cases it has also been found that a
constant C, is not sufficient to suppress the reappearance of the phase; one should then,
after the breakpoint, allow C, to decrease to the Kopp—Neumann value.
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It is normally not possible to relate the appearance of a phase at the wrong place in
a phase diagram to a particular optimizing parameter. Sometimes it can be the Gibbs
energy of a particular end member becoming too negative or the coefficients in the RK
series adding up to too negative a value where the phase should not appear to be stable.
This problem can be solved by finding an expression stating that the phase should be less
stable than the stable equilibrium in the region, which means that the phase appearing at
the wrong place must have a negative driving force at the stable equilibrium at this place.
The driving force of a phase is explained in section 2.3.6.

In the PARROT software, see section 7.3.10, this difference can be prescribed as a
negative driving force, and the problem is easily solved. This is done by prescribing that
the driving force of the phase should be smaller than some prescribed negative number.
This information can usually be added to an existing experimental tie-line or similar data
that have already been optimized. This is described in section 7.3.7.9.

It is possible to use the same feature of PARROT to force a phase to become
stable in a region where it is missing for the current set of optimizing parameters. One
can then require that the phase has zero driving force at the desired composition and
temperature.

Reasonable values of parameters

There are certain limits of the model parameters that should be considered. In most cases
the coefficients a, of temperature-independent and a, of linearly temperature-dependent
terms are the only ones to be optimized and these can be related to enthalpies and
entropies, respectively. If heat-capacity data have been assessed, the enthalpy and entropy
parts must be calculated from the full Gibbs-energy expression and one cannot look at
just the a, and a, coefficients, for example. This check must be performed before the
assessment is finished, but, now and again during the assessment, one may decide to
reset or discard parameter values that are unreasonable for the reasons discussed below.
For a sensible discussion of parameter values, one should have a reasonable fit to all
experimental thermochemical data.

There are limits of enthalpies and entropies that can be checked even when experimen-
tal data are lacking, as described in section 6.2.5.3, for example that the total entropy for
a given composition must always be positive. For enthalpy values one should expect that
their absolute value is less than a few times 100kJmol ™' (moles of atoms). For entropies
they should be less than 100Jmol ' K~'. This should apply to each coefficient in the RK
series, even if the sum of all coefficients gives a reasonable enthalpy.

Checking results of an optimization

It is not easy to know when the best possible set of parameters has been reached. The
answer will depend on the use for which one wants the description obtained. Supposing
that one wants to have the best possible descriptions using the full potentiality of the
method, for which this book is intended, the following procedures should be implemented.
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A well-optimized set of parameters for the Gibbs energies of the system should be
able to reproduce the available experimental set in the best possible way.

New experimental evidence may indicate that the description should be modified.
What are the criteria for deciding that a description is well established for the known
experimental evidence?

1. The visual check of the agreement between experimental data and calculated values
is an important tool. Tendencies shown by the experimental data but not reproduced
by the calculated curves should be carefully analyzed. They can express physical
behavior and may require a change of the modeling. This fact is illustrated by the
assessment of the Mg—Zn system (Agarwal ef al. 1992). There, the steep slope of the
liquidus line found experimentally was reproduced only after the introduction of a
temperature-dependent enthalpy of mixing into the modeling. Further experimental
enthalpy results specially provided for the optimization confirmed the existence of a
large excess C,, in the liquid phase. The background of this problem can be explained
by the Gibbs—Konovalov rule, Eq. (2.50).

2. The sum of squares of errors obtained from the least-squares fit is another important
tool, although one should not take it as the unique criterion.

3. Extrapolate to higher-order systems. Sometimes it can happen that a binary system is
quite well described, but the extrapolation of the description to a ternary system does
not succeed in reproducing the ternary experimental information. In this case the
ternary information is used for improving the binary description.

4. Analyze the plausibility of the values of the parameter found by the least-squares
fit. For example, for a stoichiometric phase for which no C, is known and the
Kopp-Neumann rule is used to estimate C,, just two coefficients are left to be
optimized. With such considerations of the selection of the number of coefficients to
be adjusted and with a reasonable set of experimental data used for the optimization
without contradicting data, the values found by the fitting also should be reasonable.
Nonetheless, one should check whether the signs and values of the coefficients are
plausible. Usually, if the value of the coefficient of the a,T-term is very large, that
should be taken as an indication that a, and a, cannot be optimized independently
and the constraint proposed by Tanaka ef al. (1990) should be considered an adequate
estimate.

5.  Removing non-significant digits. Parameters with many digits may give the impres-
sion that they are very well determined, although actually only the first few digits
are significant. However, one cannot arbitrarily round off parameters without the
danger of losing agreement with some experimental data. Even if an enthalpy and an
entropy of melting are known with at most two significant digits, their quotient, the
melting temperature, may be known to within four digits. A method of safe rounding
might be to select the parameter with the highest relative standard deviation, set it to
a rounded value, and reoptimize the remaining parameters. This can be repeated until
all parameters have been rounded to the appropriate number of significant digits; see
section 7.4.4.

6. Check that S,g and C, of all phases are within reasonable limits.
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Publishing an assessed system

Before your paper is ready to be published, you should check that the following items
are reported. These checks may also be used by reviewers.

A list of experimental data used and of those that were not used.

A complete report of the model parameters. If that is not possible, state explicitly the
reason. If the parameters are just partially reported, indicate which parameters are
missing and where to find them (for example a commercial database). Provide param-
eters in a well-documented format on a computer file for the reviewer. This facilitates
the work of the reviewer, who will wish to check that parameters and text agree.

A table of the invariant equilibria, including azeotropic maxima or minima.
Crystal-structure information and lattice parameters.

Standard enthalpies of formation (units)

A report about metastable phases.

Diagrams with calculated and experimental data together. All experimental data,
even datasets excluded from the assessment, should be plotted, maybe in separate
diagrams if it would otherwise be confusing.

e  The range of validity of the description.

These reports can be done systematically. It would be interesting to create a format as
for reporting crystal structures. Such a standard format would facilitate further improve-
ments of the modeling of the system in question. Instead of a completely new publication,
just a short note providing an update would be sufficient.

How the experts do assessment

During the preparation of this book and after so many years of cooperation, it was found
that each author had his or her own way of doing assessments. For further opinions on
assessments, read also Kumar and Wollants (2001) and Schmid-Fetzer et al. (2007), and
read several published assessments.

When modeling the Gibbs energy for phases in a binary system, one must take into
account that they will extend into multicomponent systems when added to a database.
This means that one should look at least at some ternary systems including this binary
in order to find out which phases are important. Phases stable within a small range in a
binary system may extend far into higher-order systems and the parameters assessed for
the binary system will affect the stability of the phase in the multicomponent system. The
experience with the Calphad technique is that phases assessed in binary systems taking
ternary information into account can be extrapolated to higher-order systems with a high
degree of confidence.

Expert type 1

This kind of expert will look at the general outline of a system and, if there are compounds,
he will estimate metastable extrapolations of the terminal phases and possible metastable
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three-phase equilibria with the liquid. After obtaining a preliminary fit to this, he will add
the intermetallic phases one by one and, if necessary, estimate congruent melting points
or metastable invariant equilibria with the already-assessed phases. When all phases have
finally been incorporated, he will optimize with just the experimental data, but often it
may be necessary to include some estimated equilibria in order to avoid the appearance
of phases at “wrong” compositions or temperatures. This technique facilitates the use of
ab initio data and comparisons with other systems. It emphasizes the use of the assess-
ment in higher-order systems but it requires long experience in estimating metastable
extrapolations. Often such extrapolations should be smoothed without any maxima
or minima of the liquid—solid two-phase equilibria. It is called the Kaufman—Ansara
method.

Expert type 2

This expert may be more interested in the thermodynamic models of the system than in
the specific system being assessed. He will try models and test model parameters that
generate prototype diagrams similar to the system and try to find relations between the
parameters and the various features of the system. He will also estimate or even invent
experimental data that should be representative of the system and try to determine which
model parameter can be used to describe them. Like expert type 1, he will usually work
with one phase at a time and pay great attention to the metastable extrapolations of the
system. This is a very powerful feature of the “Stockholm” school.

Expert type 3

This expert starts by analyzing all the experimental data available in order to avoid dis-
crepancies between the assessment and any experimentally determined phase diagram as
well as thermodynamic data. He will use all experimental data from the beginning and
may be less focused on metastable extrapolations insofar as they are not meaningful for
higher-order descriptions in experimentally accessible ranges. His objective is to model
the present system as well as possible, without limitations demanded by merely formal
problems of the existing database. He may prefer to simplify, if there are not enough
experimental data really enabling him to determine parameters of a more-sophisticated
model. For example, intermediate phases will be treated as stoichiometric, if the solu-
bilities are not well defined by experimental data. This is a method mainly envisaging
an academic use of the final description. That procedure reflects the “Stuttgart-PML”
(Pulvermetallurgisches Laboratorium) school.

The ultimate expert

It is more or less easy to identify the ways to do assessments by searching the literature.
The experts of type 2 will start their publications by describing the models; experiments
come later, when the discussion has been completed. Experts of type 3 start with the
experimental data, followed by a discussion of the selection of the model using arguments
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based on the existing experimental data. One does not find many papers with the first
approach, but this is the approach of people thinking in terms of multicomponent databases
for real materials.

Which is really the best method for an assessment? There are good features in all
methods and, if you can make a combination of them with a lot of “good sense,” you
will certainly obtain a reasonable result.
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In this chapter, two of the most commonly used types of software for optimization,
BINGSS and PARROT, are described.

Common features

Handling bad starting coefficients

The definition of the “error” (v; in Eq. (2.52)) is based on the “calculated value”
(F;(C}, xy;)), which is often defined by an equilibrium calculation with two or more
phases. The initial set of adjustable coefficients may result in improper Gibbs-energy
functions, with which this equilibrium cannot be calculated. As an example, in Fig. 7.1
such a situation is shown for a two-phase equilibrium, liquid 4 bcc. There G at all
compositions is larger than G''9! and the construction of a common tangent is impossible,
so also no equilibrium can be calculated numerically.

The experimental information is either “at temperature 7 there is a two-phase equi-
librium, liquid + bec, for which the composition of the bcc phase was measured as
(x"° = x')” or “in a single-phase bcc sample of composition x” on heating the first liquid
appears at temperature 7,” (see Fig. 4.4).

In the least-squares calculation for Eq. (2.52) no “calculated value” (F;(C;, x;)) can
be provided as long as the starting values for the Gibbs-energy descriptions of liquid
and bcc phases behave as in Fig. 7.1. To find better starting values by trial and error
is not easy and is time-consuming. Therefore it is desirable to have a method whereby
this problem is avoided and that can start even with a very bad initial set of adjustable
coefficients.

Zimmermann (Zimmermann 1976, Lukas et al. 1977) defined the error of a two-phase
equilibrium by a linear expression relating the Gibbs energies and their derivatives with
respect to the composition x as shown in Fig. 7.2

dG’
dx’

G+ (x"—x)- — G" =error (7.1)

The first two terms together give the point at x” on the tangent to the curve G'(x)
at x’. All three terms together thus give the distance between this point on the tangent
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Figure 7.1 At fixed temperature 7, no equilibrium between the phases can be calculated with the
Gibbs-energy curves in the diagram because the bcc phase is more stable than the liquid at all
compositions. The experimental information is a tie-line between the compositions marked by
symbols.
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Figure 7.2 Construction of the “alternate definition of error.” The difference taken at
composition x** between G*¢ and the tangent touching G'9 at x'9 is taken to be the “error.”

and G” = G at x” = x"9, If the single-phase Gibbs energies are linear functions of the
adjustable coefficients, the error itself is a linear function of the adjustable coefficients.
The thus-defined error is zero if the common-tangent construction fits exactly with
the measured concentration x'. In the following Eq. (7.1) will be called the “alternate
definition of error.” In contrast to the “normal” definition of the error, using x’ calculated
by solving the equilibrium conditions, the alternate definition always has a result, even
if the two-phase equilibrium liquid + bcc cannot be calculated. There is, however, also
a disadvantage: the alternate error depends on x”, which is either just estimated or
measured by other, independent, experiments. This may give an incorrect behavior of the
least-squares optimization.
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Therefore the alternate definition of error should be used only at the beginning. Mostly
then the result is good enough to serve as starting values using the “normal” error, i.e.,
the error obtained from a normal equilibrium calculation.

An alternate error can be defined also for other types of measurements. Generally
we define it as a linear expression relating Gibbs energies and their derivatives with
respect to independent variables that becomes zero if an equilibrium calculation using the
current set of adjustable coefficients exactly fits the experimental values. Auxiliary state
variables, like x” in the above example, may be used, but should have little influence on
the value of the alternate error in the vicinity of the final solution.

In BINGSS, besides measured T or x’' of a two-phase tie-line, alternate definitions
of error are used for measured chemical potentials w, in two-phase equilibria and for
measured temperatures of invariant three-phase equilibria. In

alternate error = % — p (measured) (7.2)
G- (1-x)=G-(1-x")

X' —x

alternate error =

— W, (measured)

the common tangent is replaced by a line connecting G’ and G” calculated for the
compositions x" and x”, respectively, without specifying it as a tangent. If the optimized
Gibbs-energy descriptions of the two phases exactly fit the measurement, this line becomes
the common tangent, if also x’ and x” are correctly given. Even if x" and x” slightly
deviate, the line is expected to be very near to the common tangent. For a three-phase
equilibrium the common tangent touches all three Gibbs energy versus mole fraction
curves. The alternate definition of error in BINGSS demands that “the three calculated
Gibbs energies must be on the same straight line” without specifying this line to be a
tangent:

1 1 1
alternate error=| G’ G” G” |=G -(X"—x")+G" - (X" —x)+G" - (¥ —x") (7.3)
x X X"

In PARROT there is no limitation in definition of the error for each experiment, thus
in principle the alternate definition can be chosen freely, too. The PARROT module of
Thermo-Calc provides a setting called “set alternate mode,” by use of which alternate
errors can be calculated from a “normal” experimental data file as differences of Gibbs
energies rather than differences between the measured and calculated quantity. More
about that is given in section 7.3 and in the user manual of Thermo-Calc.

Usage of calculated phase-diagram information during
optimization

In optimization by least squares, only single pieces of information are used as experimental
data, but it is important to calculate the complete phase diagram several times during
the assessment. Such calculations show how the thermodynamic properties interpolate
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between the experimental points and such calculations may show that some phases
appear in regions where they should not be stable. In PARROT it is possible to add as
experimental data that a phase should not be stable, as described in section 7.3.7.9.

Using calculations of metastable phase diagrams and other diagrams

The temperature—composition phase diagram, 7—x, is the normal presentation of metallic
phase diagrams and it is common to overlay the calculated diagram with the experimen-
tal data.

It is also useful to calculate metastable phase diagrams if, e.g., all phases except the
liquid and the terminal solution phases have been suspended. It may also be interesting to
calculate the metastable solubility lines between the liquid and each solid phase including
the terminal phases.

When there are measured values of the chemical potential in two-phase regions, one
may calculate 7—u diagrams, and add the experimental data to them. With Thermo-Calc,
many different diagrams can be plotted using various types of axes in the post-processing
of the same phase-diagram calculation. In BINGSS, this type of diagram is particularly
useful to elucidate regions where the T—x diagram contains metastable parts, which are
not automatically recognized by BINGSS. Calculating the T—u diagram by BINFKT
enables one to distinguish between stable and metastable regions of the two-phase fields.

How to use BINGSS

General features of BINGSS

BINGSS is restricted to binary systems. For ternary systems there is a similar program
called TERGSS. Quasibinary systems can often be treated like binary systems by BINGSS.

BINGSS was initially constructed for phases described by the RK formalism, with the
assumption that the molar functions of state of a phase are completely determined by
T, p, and the mole fractions of the components. Site fractions as used in the CEF and
similar variables initially were not used. Later, most of the models defined for binary
phases in the CEF were implemented. However, there is now a distinction between cases
in which the site fractions are already defined by the mole fractions of the components
(for example austenite, the interstitial solution of C in fcc Fe) and cases in which one or
more degrees of freedom remain when the site fractions are related to the mole fractions.
Models in which the number of degrees of freedom is more than one are not implemented
in BINGSS. Also pressure dependence is not implemented in BINGSS. Since these cases
are not often modeled, most of the binary assessments can be done by BINGSS.

The equilibrium conditions are used in BINGSS as formulated in Eq. (2.22), with all
functions of state formulated as functions of 7, p, and x;‘ (not y‘/“) The site fractions are
related to the x and a single site fraction is selected as the independent one and called
y. They are calculated for internal equilibrium of the a phase by solving the condition
dG /dy = 0. With the resulting site fractions, all molar functions of state of phase a and
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all their derivatives can be calculated using the concept of implicitly defined functions
(see section 2.3.1).

The data necessary to run the program are collected in two input files, which must
be prepared by a text editor before running the program. One of these files contains
the analytical descriptions of all the phases, namely the model selected for each of the
phases and the selection of which coefficients shall be adjusted and which kept fixed.
It has FORTRAN file code Ol and is called “xxxx.coe.” The second file contains the
experimental data; it has FORTRAN file code 03 and is called “xxxx.dat.” The name
“xxxx” is arbitrary, but must be the same for both files; usually the symbols of the two
elements are taken for it.

Some decisions regarding how to start the calculation and how to continue are either
provided in an extra file, FORTRAN file code 04, “xxxx.bgl,” or given interactively from
the terminal, if file xxxx.bgl does not exist or is empty. Mostly the program is started
with file xxxx.bgl and continued interactively.

For the data output also two files are used, “store.coe” and “output.lst.” The file
store.coe has the same structure as xxxx.coe, but contains the final numerical values of
the adjusted coefficients. If the calculation was successful, it is copied on request to
xxxx.coe, overwriting the former file. To avoid overwriting with unsatisfactory results, it
is not automatically copied.

The file output.Ist contains information about how the calculation progressed in the
various steps. Its content is determined by a variable “LAUF” in file xxxx.bgl or given
interactively. By use of the selection LAUF=4 a table can be prepared, giving for each
measurement the difference between the measured value and the value calculated with
the current set of adjustable coefficients.

The coefficient file xxxx.coe

This file is created and modified by a text editor. It is usually prepared as a formatted
file using FORTRAN format specifications. Free format (integers, fixed-point real values,
floating-point real values, or strings (“abc123xyz”) separated by blanks or commas) is
also supported by BINGSS. Lines starting with the symbol “$” are comments and are not
used by the computer. Such lines may appear everywhere in the file.

If the unary systems are elements and their descriptions are taken from Dinsdale
(1991), these may be copied from a file called “unaryOx.atd,” where Ox denotes the year
of the last update. Please check the SGTE website for the latest update. This file contains
also templates for all formats of file xxxx.coe. To use these templates most effectively, the
text editor should be switched into overwrite (or replace) mode rather than insert mode.

For quasibinary systems the “quasiunary” descriptions may be taken from the SGTE
substance database (Ansara 1999), or from another appropriate source.

In the first line of the file some dimensions are given. This line is usually edited
successively after the corresponding parts are finished. The line looks like

45CaMg32913000.00



208

Optimization tools

The first integer, NP = 4, is the number of phase descriptions in the “excess-term part”
of the file. The second integer, NT = 5, is the number of terms used in the “excess-term
part” to describe the temperature dependence of parameters according to Eq. (5.2). It is
restricted to the six terms explicitly given by Eq. (5.2). After one blank there follow two-
character names of the two components. These names are used only for table headings
in the file output.Ist, not for the identification of the components. These are identified
as components 1 and 2 in the sequence given here. Therefore this sequence must be
kept throughout all the files; it also determines the sign of odd RK terms. The following
integers, 3, 2 and 9 are the variables NPREF(1), NPREF(2) and NTU of the following
“reference states part.” The integer 1 specifies that Eq. (5.2) is used to describe the
temperature dependence of G. Initially another formulation of this equation was used,
which was derived from the description of C,, by a polynomial in 7'

G=b,—by,-T4by-T-[1=In(T)|—by-T?/2—bs-T™' /2 —bs-T*/6 (7.4)

This description of temperature dependence can be selected by integer 0. Finally, the
real number 3000.00 is the maximum temperature for which it is recommended that the
dataset should be used.

The following “reference-state part” contains Gibbs-energy descriptions of the stable
phases of the unary systems, called reference phases in the following text. They are
functions of temperature after Eq. (5.2), here not restricted to six terms. Also here several
different sets of coefficients a@; may be used for different temperature ranges. The number
of different reference phases is given in the first line for both elements separately as
integers NPREF(1) and NPREF(2). Also the maximum number of different coefficients
a; is given in the first line as the integer NTU. The description for each reference phase
starts with a line giving the number of different temperature ranges and a name. This
name is not used by the computer and may be considered as a comment. Then, for each
temperature range, depending on NTU, there follow one (NTU < 4), two (5 < NTU < 9),
or three (10 < NTU) lines giving the lower limit of the temperature range and the
coefficients a;. An example for NTU=9 is

3A1_(fcc)

298.00 -7.97615000D+03 1.37093038D+02 -2.43671976D+01 -1.88466200D-03
7.4092000D+04 -8.7766400D-07 0.000000D+00 0.000000D+00 0.000000D+00
700.00 -1.12762400D+04 2.23048446D+02 -3.85844296D+01 1.85319820D-02
7.4092000D+04 -5.7642270D-06 0.000000D+00 0.000000D+00 0.000000D+00
933.47 -1.12783780D+04 1.88684153D+02 -3.17481920D+01 0.00000000D+00
0.0000000D+00 0.0000000D+00 0.000000D+00 0.000000D+00 -1.231000D+28
3 Al liquid

298.00 3.02887900D+03 1.25251171D+02 -2.43671976D+01 -1.88466200D-03
7.4092000D+04 -8.7766400D-07 0.000000D+00 7.933700D-20 0.000000D+00
700.00 -2.71210000D+02 2.11206579D+02 -3.85844296D+01 1.85319820D-02
7.4092000D+04 -5.7642270D-06 0.000000D+00 7.933700D-20 0.000000D+00
933.47 -7.95996000D+02 1.77430178D+02 -3.17481920D+01 0.00000000D+00
0.0000000D+00 0.0000000D+00 0.000000D+00 0.000000D+00 0.000000D+00
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The first line specifies three temperature ranges and the name “Al_(fcc),” the next pair of
lines gives the lower temperature limit and the nine coefficients a, to a,, the following
pair of lines is for the temperature range starting at 700 K, and the last pair is for the range
above 933.47 K. The last range is the range of the metastable solid above the melting
temperature containing the term a,- T2 (Andersson 1985). The following reference phase
is liquid Al, containing the term ag-T7 (Andersson 1985) in the ranges below the melting
temperature.

The various reference phase descriptions are identified by integer numbers indicating
their sequence in the file. They are counted starting with No. 1 first for the first element
and starting again with No. 1 for the second element.

The following part of the file is the “excess-term part.” It consists of descriptions
of each phase of the binary system. For each phase in one line the model is chosen
and a name is given. Several models need some stoichiometric coefficients for complete
description, which are also given in this line. Finally, the reference states of both elements
used in the G’ part of the description of G’ in Eq. (5.1) are selected by two integers
from the “reference phases” of the previous part of this file. The following lines give the
parameters for this phase as functions of 7 in accord with Eq. (5.2), using the coefficients
a, to ag. The parameters are identified by their sequence, differently for each type of
description. For each of these coefficients a one-digit integer is used as a logical variable
to decide whether the coefficient will be adjusted during the optimization or kept constant.
For a phase described by the RK formalism with terms OLKB to zLﬁqB the description of
the excess part may be as follows:

5phi 1200000021
000000 0.00 0.00000 0.000000 0.000000 0. 0.00000
000000 0.00 0.00000 0.000000 0.000000 0. 0.00000
110000 0.00 0.00000 0.000000 0.000000 0. 0.00000
110000 0.00 0.00000 0.000000 0.000000 0. 0.00000
100000 0.00 0.00000 0.000000 0.000000 0. 0.00000

In the first line the number “5” means that there are five parameters for this phase; “phi”
is the name; and “12” is the code for Redlich—Kister. By this code also the parameters are
defined as G — Gy, °Gy —°Gy', °LY 5, 'L% ;. and 2L} . The following four zeros
are reserved for stoichiometric constants and are not used for the RK formalism. The
next two zeros are for counting the parameters of a magnetic description (here, 0) and the
parameter p (given as integer 1000 - p). The next two numbers indicate that for element
A the second reference phase is chosen and for element B the first reference phase is
chosen. The reference phases correspond to °G}" — HSER for element .

The following lines give the six one-digit integers and six coefficients of the five
parameters. Both °G? —°G'" are zero here. For OL:B and lL:B two coefficients are
adjusted and for ZLZB only one. The number of coefficients to be adjusted must be less
than or equal to the maximum number of coefficients used per line, which is given by
the integer NT in the first line of the file.

For referencing in file xxxx.dat and everywhere else during the calculations, the phases
are identified by integer numbers denoting their sequence in the file. There may appear
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several different descriptions for the same phase, which in calculations by BINFKT may
be used to compare these different descriptions on the same plot using different line styles
(dashings or colors).

In the last part linear constraints relating the coefficients being adjusted can be intro-
duced. These constraints are of the form Acoeff = factor- AV;, where V; are the “indepen-
dent coefficients” to be adjusted and “factor” means the factor by which an independent
coefficient contributes to the coefficient appearing in the formalism of the description.
Each “independent coefficient” is identified by an integer and each “coefficient of the
formalism” by its line and column number in the “excess-term part” of this file. As
an example the correlation of the two coefficients a, and a, of parameter °L (line 3)
according to the estimate of Tanaka et al. (1990) with a factor of T, = 8400K is shown
below:

1318.40000000D+03
132-1.00000000D+00

The file is finished by a line containing only zeros and blanks. Behind that line
comments may be added. A set of items useful for complete documentation is given in
the file “unary.atd.” It is strongly recommended that all these comments be added, as
long as they are available without needing to search for them again in old protocols.

The experimental data file xxxx.dat

The file containing the experimental data, xxxx.dat, must be created in parallel to the xxxx.coe
file. The sequence of the components and the numbering of the phases must be common
to xxxx.coe and xxxx.dat. That must be decided before starting to construct the files.

Each experiment must be completely described by the FORTRAN variables NTYP,
NPHA, ITU(1) to ITU(4), WDW, T£DT, TT, DTT, and X(1) to X(6), some of which
are not used for some types of experiments. The experiments are classified into types
by NTYP and NPHA, where NTYP distinguishes between partial Gibbs energies of
element A (1) or B (2), enthalpy differences between single-phase samples at the same
temperature (3) or different temperatures (4, 12), enthalpy differences between two-phase
equilibrium samples (5), entropy differences (9, 10, 11), phase-diagram mole fractions
(6) or temperatures (8), equilibrium phase amounts (7), equilibrium mole fractions at
isopiestically given chemical potentials (14, 15), or site fractions of a species on a
sublattice (13). NPHA gives the number of phases involved in the experiment. Reference
states need not be counted in NPHA, although they must be specified as phases. The
array ITU(l) identifies the phases including the reference states. W=+DW is the measured
value in SI units. TEDT and, if necessary, TT are temperatures in kelvins. If TT is used,
DTT describes the accuracy of (T—TT), not of TT itself. The X(I) are mole fractions.

Experiments are classified into standard types, for which the equations of error
(Eq. (2.52)) are summarized in Table 7.1. This classification covers nearly all possible
experiments giving quantitative information connected with thermodynamic functions,
except pressure dependence. Which of the above variables are used and their specific
meanings depend on NTYP and NPHA, as summarized in Table 7.2.
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Table 7.1 Equations of error related to binary experimental data

Type IVERS Calculated value — measured value
1 1 Al Wy =G — g
1 2 1,3,5,6,7 G -X"/(x"—x) + G- x[(x —x") —°G — M
1 2 2,489 pite — G — g
2 1 Al why—°G5" — py
2 2 1,3,5,6,7 G”-(x’—1)/(x’—x”)—|—G’-(x”—1)/(x”—x’)—°Grzef—&
2 2 2,489 pytge — G5 — py
3 1Al H/(T) — (1—x)-*HE(T) —x-HE5(T) — H
3 2 All H(T)-H'(T) - H
3 3 All H((T)-(1-m")-H"(T)—m" -H"(T) — H
4 2 All H(T)-H"(T,)-H
4 3 All H((T)-(1-m")-H"(T,)—m"-H"(T,) — H
4 4 All H/(T) _ [(1 _ m/// _ m////) . H// + m/// . H/// + m//// . H/,//](TQ) _ H
no__ 0 0_ 7
5 3 29 H'(T) - (x S (N H”’)(Tz)calc -H
X" —x X" —x
¥ = )CO XO —x
5 4 2-9 7 / ‘H,+ 7 / “H" (T)calc
X' —x X' —x
X" — XO » XO —— »
- 1 " -H” + 1 e H (T2)calc -H
X" —x X" —x
6or8 2 1,3,59 G'(T) + (x"—x')-9G'/ax(T) — G"(T)
6 2 2,4 Xoo(T) — X'
6or8 2 2,4 if X' = x”, extremum, Toue—T
6or8 3 1,3,5,6,8 [G-(x"=x")+ G- (X =x")+ G- (x"—=x")|(T)
6or8 3 2,4,7,9 T —T
7 2 2-9 ml (T, x%) — m'
8 2 2,4 T —T
9 1Al S(T) = (1 =x) ->SLU(T) = x-°S(T) — S
9 2 All S(T)—-S"(T)-S
9 3 All S(T)—1-m")-S"(T)—m"”-S"(T) — S
10 2 All S(T)—-S"(T,) — S
10 3 All ST —A—m")-S(T,)—m"-S"(T,) — S
11 3 All S(T)y—1-m")-8(T) —m"-8"(T,) — S
12 3 All H((T)-1-m")-H(T) —m"-H"(T,) — H
13 1 2-9 (TZ =0) y{/a,calc(T) - y(/a
13 1 2-9 (TZ 750) y(/a,calc(T) - y(/a,calc(TZ) - (y{/a(T) — y{/d(TZ))
14, 15 1 1,3,5,6,7 W — G — M (i=NTYP-13)
1415 1 2489 () - X ()

The underlined symbols are the measured values. All other symbols are either independent variables,
given in file xxxx.dat as specified by Table 7.2, or calculated from the current set of adjustable
coefficients. The subscript “calc” indicates the result of a Newton—Raphson calculation of a two-
or three-phase equilibrium. Va denotes vacancies.
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Table 7.2 A summary of binary experimental values used in the file xxxx.dat

TYP W DW T DT TT DIT X(1) X2 X3) X@) X(5) X6 n
L 1w Awy T AT - - X Ax' 1
12 py Apy T AT - - X Ax' x’ Ax" - - 2
21 p, Au, T AT - - x' Ax' 1
22 p Au, T AT - - x' Ax' x" Ax" - - 2
31 H AH T AT - - X' Ax' 1
32 H AH T AT - - x' Ax' (x'=x") 1
33 H AH T AT - - m”  Am" X' Ax" X" Ax" 2
42 H AH T AT T, AAT ¥  AY =x") 1
4 3 H AH T AT T, AAT w” Am"” X' Ax" X" Ax" 2
4 4 H AH T AT T, AAT m" Am m" X x" X2
53 H AH T AT T, AAT X° Ax X x" (X =x) 2
5 4 H AH T AT T, AAT X° Ax0 ¥ x" x" x" 2
6 2 - - T AT - - x Ax’ x - (x" #x") 2
6 2 - T AT - - X' Ax' x" - (x'=x") 2
6 3 - - T AT - - x' - x” - x" - 2
72 m Am' T AT - - x0 Ax® x - " - 2
8 2 - T AT - - x/ Ax/ x” - - - 2
8 3 - - T AT - Y - X - meo 2
91 § AS T AT - - X Ax' 1
9 2 S AS T AT - - X' Ax' (x'=x") 1
9 3 § AS T AT - - m”  Am" X" Ax" X" Ax" 2

100 2§ AS T AT T, AAT X Ax' (x'=x") 1

10 3§ AS T AT T, AAT w” Am"” X" Ax" X" Ax” 2

11 3 S AS T AT T, AAT w” Am" X' Ax" X" Ax" 2

12 3 H AH T AT T, AAT wm"” Am" X’ Ax" X" Ax" 2

13 1 yva Ay, T AT (T, AAT) X Ax' 1

14 1 w, Apy, T AT - - x Ax' 1

51 w Ap, T AT - - X Ax' 1

The measured quantities are underlined. The other values are independent variables or used as
starting values of a Newton—Raphson calculation.

H+ AH, p+ Ay = value in Jmol~! of atoms

T + AT, T, = temperatures (K)

AAT =accuracy of T — T,

X'+ Ax’ = mole fraction of phase ITU(1)

x° £ Ax° = overall mole fraction

m' & Am’' = amount of phase ITU(1) in moles of atoms per total amount
- =value is not used

TYP =two integers, NTYP and NPHA

n=number of lines used in file xxxx.dat for this value

Compiling experimental values using the program BINDAT

The file xxxx.dat can, in principle, be written as an ASCII file by any text editor. Usually
several calculations are necessary in order to get the values for the variables in the file
from the data reported in a publication, such as transformations from mass fractions to
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mole fractions or changing units to SI units. To facilitate this, a program called BINDAT
was written.

This program is constructed so that one need enter only once data that usually are
equal throughout a set of measured values, thus minimizing the input for a single value
to the few numbers characteristic for this value. Values that are equal only for a subseries
may be prompted intermediately. Because of the manifold different ways to report data
of the same kind, this idea may turn out not to be used 100% consequently. At each level
of (sub)series a condition is prompted, by which the program switches to the previous
level. This condition is an input that is impossible for the variables prompted, namely
a “phase number” zero, a “mole fraction” outside the range 0-1, or a “temperature”
below 0 K.

For the accuracies of the measurements a standard estimation procedure is used. The
estimated accuracy of each value is additively composed of a part proportional to the
value and of a constant part, v = v+ Av, with Av = v- DWP + DWA. The constant part
reflects the minimum quantity detectable by the method applied and the proportional
part reflects the usual trend that the inaccuracy of large measured quantities increases
proportionally to the quantity itself. The factor of proportionality as well as the constant
part are given once for a series of measurements. The accuracy of mole fractions is
estimated similarly. Since a mole fraction near unity corresponds to a small mole fraction,
the proportional part is taken as a fraction of (1 — x) - x rather than as a fraction of the
mole fraction x itself. Since the maximum of (1 — x)-x is 1/4 in this context, this fraction
is multiplied by 4 in order to make the maximum estimated inaccuracy equal to the factor
plus the constant value given by x = x + Ax with Ax = x- (1 — x) - DXP 4+ DXA. For the
accuracy of the temperature only a constant value AT =DT is estimated. For the variables
DWP, DWA, DT, DXP, and DXA default values of 0.05, 0.0, 5.0, 0.004, and 0.001 are
proposed. It is necessary to estimate these accuracies to be equal for experimental data of
similar quality, even if the accuracies given in the papers are different. If all the values
of the inaccuracies were changed by the same factor, this would not change the result
of the least-squares calculation, since it is just equivalent to a change of meaning of the
inaccuracies, for example from a mean error to a limit of the 99% confidence range.

Since equivalent values may be reported differently in the literature, besides the
variables NTYP and NPHA a third variable ISELEC is used to select the proper type for a
series of measured values. For each series a two-character label is requested. This label
in BINGSS is used to change the weighting by multiplying it by a dimensionless factor
(including zero for omitting this series). In BINFKT the label is used to select different
symbols for plotting the measured points. Therefore, if data of the same kind and the
same origin might need to be distinguished later, they should be compiled as different
series with different labels.

During the interactive input to BINDAT all the data input is collected into a file
called yyyy.out. This file may be renamed to yyyy.bin and BINDAT can be executed
again, using this file as input rather than interactive input. Typing errors may be corrected
and new values added to yyyy.bin by a text editor. The formatted experimental data
file appears as file yyyy.app. Several of these files with different names “yyyy” may be
merged by a text editor to give a single file “xxxx.dat.”
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7.2.3.2 An example of running BINDAT

Starting BINDAT gives the following messages on the screen (the first two questions are
answered by “0” and “MgY”, respectively):

Give: from terminal (0)
from file 01 = "sys".bin (1)

Give: 2 element names
(2 characters each without blank between and before)
MgY

Give: LABEL, NTYP, NPHA, ISELEC
========== NTYP =0Q: Stop ==========

LABEL: 2 characters without blank before

NTYP =1 or 2, NPHA=1or 2, ISELEC =1: my (emf, RTlna,..)

lor2 lor2 2: my as A+ BT + CT1nT
lor?2 lor?2 3: vapor pressure by dew point
lor2 lor2 4or5: like 1...2, but excess my
lor2 lor2 6: activity
NTYP = 3, NPHA =1, ISELEC = 1: H(mix) or H(form)
NTYP =3 or 4, NPHA = 2, ISELEC = 1: Delta-H of two phases
4 2 2: Cp-values
NTYP=3,4 or 12, NPHA=3 or 4, ISELEC = 1: Enthalpies of mixing
(series)
3 3 2: partial enthalpies
3 3or4 3: Series, reported as H(mix)
NTYP = 6 or 8, NPHA = 2 or 3, ISELEC = 1: phase diagram
6 or 8 1 1: for plot by BINFKT only

LABEL = "$ ": Comment
0 000

This is a short list of all the types of experiment implemented in BINDAT and their
usual descriptions in the literature.

The most effective way of running BINDAT is to give interactively some few values
and interrupt the program as done here by giving four items “0 0 0 0” with O for NTYP.
BINDAT creates a file MgY.out, which can be used as a template for adding more input
data by a text editor. The file is then renamed MgY.bin. Starting BINDAT again and
answering the first two questions by “1” and “MgY” compiles the data. The file MgY.out
contains at the end of each line, after the relevant numbers, the names of the data given
in that line.
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Part of the file MgY.bin is listed here containing two series of calorimetric measure-
ments, for which cold samples (298 K) were thrown into a calorimetric bath at T = 955
or 974 K containing initially Y1 moles of Mg and Y2 moles of Y. Each sample contained
Y3 moles of pure Y (X3 = 1, ITU(3) = 3), the measured heat effects were HM J. (ITU(3)
= 3 is defined by the file MgY.coe to be the phase hcp_A3.) This type of measurements
is explained in Fig. 4.2.

MgY Element names
$ FA [95Aga] R. Agarwal, H. Feufel, F. Sommer, J. Alloys Comp. 217
$ (1995) 59-64
FA 12 3 1 LABEL,NTYP,NPHA,ISELEC
1 2 1 1ICONC,IELEM,ITEMP,IVAL

.050000 .00 5.00 .004000 .001000 DWP,DWA,DT,DXP,DXA

2 2 955.00 298.00 5.00 ITU(1l),ITU(2),T,TT,DTT
.240880 .000000 Y1, Y2
.003580 -123.3000 1.000000 3 Y3,HM,X3,ITU(3)
.003930 -115.4000 1.000000 3 Y3,HM,X3,ITU(3)
.005200 -141.3000 1.000000 3 Y3,HM,X3,ITU(3)
.005200 -118.6000 1.000000 3 Y3,HM,X3,ITU(3)
.006270 -112.5000 1.000000 3 Y3,HM,X3,ITU(3)
.005660 -42.8000 1.000000 3 Y3,HM,X3,ITU(3)
.007330 35.8000 1.000000 3 Y3,HM,X3,ITU(3)

0.0. 0. 0 new series

-1.-1. new phases, new temp.

2 2 974.00 298.00 5.00 ITU(1l),ITU(2),T,TT,DTT
.142330 .000000 Y1, Y2
.001260 -65.0000 1.000000 3 Y3,HM,X3,ITU(3)
.001490 -48.4000 1.000000 3 Y3,HM,X3,ITU(3)
.001150 -48.1000 1.000000 3 Y3,HM,X3,ITU(3)
.001610 -63.6000 1.000000 3 Y3,HM,X3,ITU(3)
.001990 -19.7000 1.000000 3 Y3,HM,X3,ITU(3)
.001910 -54.1000 1.000000 3 Y3,HM,X3,ITU(3)
.001920 -47.7000 1.000000 3 Y3,HM,X3,ITU(3)
.001940 -44.1000 1.000000 3 Y3,HM,X3,ITU(3)
.001870 -30.4000 1.000000 3 Y3,HM,X3,ITU(3)

0. 0. 0. 0 newseries

-1. -1. new phases, new temp.

000.0.0. new LABEL, NTYP, NPHA

0 0 0 O End of input, stop

Now running BINDAT, giving the two answers “1” and “MgY,” results in

Give: from terminal (0)
from file 01 = "sys".bin (1)
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1
Please give file (+ path) name (without apostrophes)
MgY

16 values

Sixteen experimental items were created and compiled into a newly created file,
MgY .app, listed here:

$ FA [95Aga] R. Agarwal, H. Feufel, F. Sommer, J. Alloys Comp. 217
$ (1995) 59-64
FA 2 2 3 012 3 -504.38 25.22 95500 500 29800 500 1464452 123088
0 100000100000000 100000
FA 2 2 3 012 3 -464.59 23.23 95500 500 29800 500 1582189 124914
1464452 123088100000000 100000
FA 2 2 3 012 3 -557.20 27.86 95500 500 29800 500 2050554 132136
3023471 146913100000000 100000
FA 2 2 3 012 3 -458.29 22.91 95500 500 29800 500 2009351 131504
5012027 176173100000000 100000
FA 2 2 3 012 3 -424.43 21.22 95500 500 29800 500 2365502 136953
6920669 203067100000000 100000
FA 2 2 3 012 3 -158.10 7.90 95500 500 29800 500 2090721 132752
9122463 232644100000000 100000
FA 2 2 3 012 3 128.75 6.44 95500 500 29800 500 2636217 141068
11022459 256920100000000 100000
FA 2 2 3 012 3 -452.68 22.63 97400 500 29800 500 877498 113917
0 100000100000000 100000
FA 2 2 3 012 3 -333.61 16.68 97400 500 29800 500 1027020 116264
877498 113917100000000 100000
FA 2 2 3 012 3 -328.93 16.45 97400 500 29800 500 786432 112484
1895506 129753100000000 100000
FA 2 2 3 012 3 -430.19 21.51 97400 500 29800 500 1089015 117234
2667031 141534100000000 100000
FA 2 2 3 012 3 -131.48 6.57 97400 500 29800 500 1328172 120969
3727002 157410100000000 100000
FA 2 2 3 012 3 -356.53 17.83 97400 500 29800 500 1258732 119886
5005673 176082100000000 100000
FA 2 2 3 012 3 -310.43 15.52 97400 500 29800 500 1249512 119742
6201397 193069100000000 100000
FA 2 2 3 012 3 -283.42 14.17 97400 500 29800 500 1246787 119700
7373422 209276100000000 100000
FA 2 2 3 012 3 -193.05 9.65 97400 500 29800 500 1187528 118775
8528278 224815100000000 100000
00000000000000000000000000000000000000000000000000000000000000000000000

Each measurement is represented by two lines, which, by the FORTRAN format
specification,

FORMAT (A2,6I2,F9.1,F7.1,2(F7.2,F5.2),8P,2F9.0/T2,8P,4F9.0)

are related to the variables given in Table 7.2. A list giving these variables in a more-
readable form can be created by BINGSS by specifying the variable LAUF = 3.
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Running BINGSS

BINGSS is open-source code; it is available from the website of this book. There BINGSS
can be used and tested following the instructions on line.

If the files xxxx.coe and xxxx.dat are ready, BINGSS can be run interactively by
following the prompt commands. The first standard answers on these prompt commands
preferably are given by a file xxxx.bgl looking like

100

1329101.000E-111.000E+00
0sv

9321001.000E-111.000E+07

The first integer in the first line is non-zero and specifies that the file xxxx.bgl exists.
The two following integers, 0 0, specify that files xxxx.coe and xxxx.dat are to be
formatted. Non-zero integers specify free-format input from the corresponding file.

The second line contains six integers named LAUF, IVERS, TALGOR, NMAX,
NOTAUT, and NOTPHA, and two real numbers, EPS and PMARQ.

e [ AUF determines the amount of output given in file output.Ist: “1” gives the minimal
output, the mean square of error after each complete run of the optimization algorithm;
“7” allows one to copy the current set of coefficients into the file “store.coe”; and
“9” switches to interactive input.

e IVERS defines the use of the “alternate mode” (section 7.1.1): “1” selects only
alternate mode (data for which no alternate mode is defined are skipped); “2” selects
normal mode for all values; and “3” is like “1,” but values without definition of
alternate mode are kept and used in normal mode. Other integers define a mixture
of alternate and normal mode, which sometimes is useful in intermediate steps. The
corresponding equations of error are given in Table 7.1.

e JALGOR selects between Gauss (1) and Marquardt (2) algorithms. Usually the
Marquardt algorithm is selected.

e NMAX gives the number of complete runs of the optimization algorithm before the
next prompt asks for continuation.

e NOTAUT gives the number of different “labels” for which the weighting defined by
Eq. (2.60) is multiplied by a dimensionless factor.

e NOTPHA: to improve convergence, some phases may be suspended during the first
optimization steps, this integer declares how many.

e EPS is a convergence criterion. If the corrections of all coefficients are smaller than
the absolute value of the coefficient times EPS, the calculation is defined to have
“converged” and stops.

e PMARQ is the Marquardt parameter (see section 2.4.3). It is decreased by a factor
of 10 after each successful step and increased by a factor of 10 after each diverging
step.

The following line is formatted. It contains NOTAUT groups of a four-digit integer
(0 to 9999) and a two-character label. The weighting of the values in xxxx.dat marked
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by this label is multiplied by this integer taken as percent. There may be eight such
groups in the line, up to three lines. If NOTPHA is not zero, there follows a line defining
the phases to be suspended by three-digit integers (numbers defined by the sequence of
phase descriptions in xxxx.coe).

In the above example the following line gives LAUF =9 and thus switches to interactive
nput.

Plotting of diagrams for comparison with
experimental data

The result of an optimization must be checked by comparing all experimental data with
the corresponding values calculated using the optimized dataset. This is usually done by
plotting diagrams.

For this purpose the program BINFKT is provided in the BINGSS package. It enables
one to calculate tables and to produce plots of molar functions of state of single phases
versus temperature or mole fraction, of invariant equilibria (three-phase equilibria or
azeotropic points of two-phase equilibria), or of two-phase equilibria between two selected
temperatures. “Mapping” of phase diagrams is not provided. All equilibria are calcu-
lated between specified phases irrespective of whether they are the most stable ones.
This allows plotting of metastable two-phase equilibria. BINFKT also enables one to
introduce experimental data compiled in the file xxxx.dat into various types of suitable
diagrams.

To check the stability ranges by use of BINFKT, the calculation of T versus w; plots
is recommended (two-phase equilibrium chemical potentials).

BINFKT uses the same files as BINGSS, namely xxxx.coe and xxxx.dat, as well as an
extra file called xxxx.bfl defining all the tables and curves to be calculated. This file may
be created by running BINFKT interactively, but usually it is easier to take an existing
such file as template and create xxxx.bfl by use of a text editor.

Some differences from PARROT

BINGSS cannot be used for ternary or higher-order systems.

BINGSS has some restrictions regarding the usage of less-common models.
BINGSS has built-in equations of error for most types of experimental data.
BINGSS can start an optimization with all parameters set to ZERO without any extra
preparation of the experimental data used (start with IVERS = 1). If only models
in which the number of independent site fractions does not exceed the number of
independent mole fractions are selected, this guarantees convergence in very few
steps. This procedure creates a set of starting values that will usually give the final
optimization in a few steps.

5. BINGSS outputs a complete list of final errors (differences between calculated and
measured values) on request (LAUF =4).

Sl
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7.3.1

With the program PARROT, which is part of the Thermo-Calc software system, one can
fit thermodynamic model parameters to all kinds of experimental information that can
be measured at an equilibrium, stable or metastable. Any kind of model parameter can be
optimized, including magnetic and pressure-dependent parameters, in all models that have
been implemented in the Gibbs Energy System (GES), which is also a part of Thermo-
Calc. A special version of PARROT, not described here, can also optimize mobilities and
activation energies for diffusion.

PARROT is not limited to binary systems but can handle experimental information
for systems with up to twenty components. In practice systems with more than five
components have never been used in an assessment and in most of those cases binary and
ternary parameters only were adjusted or added to fit the multicomponent information.

PARROT is a fully interactive program. It is possible to give all information about the
system to be assessed directly from the keyboard to the program, but it is recommended
that the user start by creating a number of text files for data and commands, of which
the most important are the setup file and the experimental data file. PARROT has a main
module for manipulating the optimizing conditions and a special EDIT-EXPERIMENT
module for manipulating each individual experimental equilibrium.

This chapter does not replace the user’s guide, which is available together with the
software, but it contains practical advice based on experience and will convey the flavor
of the system. The user must be aware of the fact that it is his own judgment that is
critical. The software is only a tool for trying out various options of model selection
and weighting of experimental data. It requires a user with a good understanding of
thermodynamics and phase diagrams and some experience of modeling.

The optimization method

For equilibria for which all independent state variables are determined with negligible
inaccuracies, the criteria for the best fit, derived from the maximum-likelihood principle,
will be minimum in the sum of squares of weighted residuals. Inaccuracies in experimental
conditions can be taken into account in two ways in PARROT.

1. The inaccuracies in conditions, i.e., independent state variables, can be prescribed
in the POLY-3 interface. In this case an equilibrium will be calculated with the
experimental values of independent state variables. The standard deviations of the
dependent state variables will be calculated by use of the error-propagation law,
presuming linear dependences of the dependent state variables on the independent
state variables.

2. The “true” value of the condition can be optimized by using one of the defined
variables as the condition. This can be obtained by the IMPORT command in the
experimental data file. In this case the experimental observations of the independent
state variable should be specified in the EXPERIMENT command in the experimental
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data file. The commands that can be used in the experimental data file are a subset
of the commands available in the POLY-3 module, with a few extensions.

Both methods can be transformed to the problem of finding the minimum of the sum
of squares. Method 2 can be used when several experiments have been performed under
the same, badly determined, conditions. The two methods can be mixed in the same
optimization run.

The set of adjustable coefficients, in PARROT called variables, that give a minimum
of the sum of squares is found by a numerical subroutine called VAO5SA from the Harwell
Subroutine Library.

The use of PARROT

The assessor should prepare a number of files that will be used during the assessment.
These will be briefly described here. They are

POP file with experimental data,

SETUP file with models and known and unknown parameters,
EXP file with experimental data to be plotted, and

MACRO files for quick calculation of various diagrams.

These files will be described below in more detail. A simple description of the flow
of the assessment work would be as follows.

1. Prepare the SETUP and POP and EXP files with a text editor (not a word processor!).

2. Start PARROT and run the SETUP file once to create the work file, usually called
the PAR file since its extension is “.PAR.” The PAR file is machine-dependent and
cannot be read by a text editor. It can be manipulated only through the PARROT
module. The PAR file will always contain the last results and is automatically
updated whenever it is used in PARROT. Whenever a user wants to “freeze”
a reasonable set of model parameters but perhaps continue trying to change the
weightings or set of model parameters, it is advisable to make a copy of the PAR
file.

3. COMPILE the POP file inside the PARROT module. The experimental data will

be stored on the PAR file.

Select which variables to optimize.

SET-ALTERNATE-MODE ON and optimize all equilibria until they have con-

verged.

RESCALE the variables to set the start values to the final values.

Optimize and rescale until no more changes occur.

SET-ALTERNATE-MODE OFF.

Calculate diagrams and compare the results with experimental data. This should

be done whenever needed during the steps below also. The sum of errors is not a

sufficient measure of the overall fit. You may find it convenient to make MACRO

files to calculate several diagrams.

oo

Yoo
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10. Use the EDIT-EXPERIMENT module to COMPUTE-ALL equilibria. Some equi-
libria might not converge or may converge to results far away from the experimental
data. Some hints on how to handle that are given below. Experimental data that
cannot be calculated should have SET-WEIGHT zero. SAVE when finished with
the EDIT module.

11. Optimize the variables zero times and check the errors carefully, using the LIST-
RESULT command. This output gives an overview of the current fit to all experi-
mental data. You may have to use the EDIT module again to correct or remove
(SET-WEIGHT zero) some equilibria.

12.  Optimize and rescale the variables until the calculation has converged. You may
find that some variable becomes very large or very small. That may be due to a lack
of experimental information. You may have to increase or decrease the number of
optimized variables and also use the EDIT module to select the weightings of the
various experimental equilibria until you get reasonable results.

13.  You may have to optimize “in parts,” keeping the variables for some phases fixed
and optimizing others with respect to selected sets of experimental data. The selec-
tions of experiments are made in the EDIT module.

14.  You may have to iterate several times through all points above, even editing the
POP and SETUP files, before you are satisfied. You may try various models for
the phases and various numbers of variables for each phase.

15. A final optimization with all variables and all experiments with their selected
weightings should be carried out.

16. Write the report. When you do this, you may find that you cannot explain some
decisions made during the optimization; and you may have to go back to optimize
and try various new options.

The experimental data file, the POP file

The experimental data on a system, taken from the literature or measured by the assessor,
should be written onto a file called a “POP” file (because the default extension is .POP).
The experimental equilibria and measurements are described with POLY commands, with
some additional features. The commands that are legal in a POP file are described in a
special section of the POLY manual. It is very important to understand the state-flexible
variable notation used in POLY and PARROT.

The POP file is a very important form of documentation because it describes the
known experimental data for a system. The POP file is intended to be self-documenting
and readable both to a human and to the computer. The experimental data are described
independently of the models selected for the phases. It is thus possible to use the same
POP file to assess a system using different models for the phases. It is not uncommon that
a system must be reassessed some years later when new information is available, or if a
model for a phase should be changed. Since the reassessment may be done by someone
other than the person who created the POP file, it is important that the information in the
POP file is well organized and documented.
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The recommended way to specify an experimental equilibrium is to document as
closely as possible the actual experimental conditions. Usually the set of stable phases is
known and also the temperature, pressure, and some or all compositions. We will now
describe how to enter some typical experimental data.

Single-phase experiments

Experiments with a single stable phase most often concern enthalpies of mixing or
chemical potentials. As an example, the following describes an experiment on the Au—Cu
system:

CREATE-NEW-EQUILIBRIUM 1 1

CHANGE-STATUS LIQUID=FIX 1

SET-CONDITION T=1379 P=1E5 X(LIQUID,AU)=0.0563
SET-REFERENCE-STATE AU LIQ * 1E5

SET-REFERENCE-STATE CU LIQ * 1E5

COMMENT Measurement by Kopor and Teppa, Met, Ann. Phys. 1927 p 123
LABEL ALH

EXPERIMENT HMR=-1520:200

GRAPHICS 5 1379 -1520 1

The first five commands in this example are standard POLY commands described
in the user’s guide, but the first command, CREATE, is rarely used in POLY and may
deserve some comments. Each experimental equilibrium must start with the CREATE
command and the first integer given after the command is a unique identifier that is later
used interactively to set weightings, for example. The second integer is an initialization
code; 0 means that all components and phases are initially suspended, 1 means that all
components are entered but all phases suspended, and 2 means that all components and
phases are entered initially.

The last four commands, COMMENT, LABEL, EXPERIMENT, and GRAPHICS are
available only for the POP file and in the EDIT-EXPERIMENT module. EXPERIMENT
specifies the quantity to be fitted by the optimization. The syntax of this command is
similar to that of the command SET-CONDITION. It is followed by a state variable or a
function name and a value and an uncertainty. The EXPERIMENT command is described
in detail in the section of the POLY command manual about the EDIT-EXPERIMENT
module.

The command COMMENT is followed by a text that will be saved in the work file
of the optimization. One may also give comments after a dollar sign, “$”, but these
comments are lost when the experimental data file is compiled; see section 7.3.7.1.

The command LABEL provides a way to specify a set of equilibria that the user wants
to treat as one entity when setting weightings. A label can have at most four characters
and must start with the letter A.

The command GRAPHICS can be used to create automatically an experimental data
file, the EXP file, when the POP file is compiled. This is a new feature from version
P of Thermo-Calc. Read the documentation in the Thermo-Calc manual to understand
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this file format. The first integer after the command is the dataset number; the next two
numbers are the horizontal and vertical coordinates, respectively. The final integer is the
symbol to plot.

Two-phase experiments

Most experimental information, for example from the phase diagram, involves two or
more phases. For example, the melting temperature of an Au—Cu alloy can be described
as follows:

CREATE-NEW-EQUILIBRIUM 1 1

CHANGE-STATUS PHASE FCC=FIX 1
CHANGE-STATUS PHASE LIQUID=FIX 0
SET-CONDITION X(FCC,CU)=0.14 P=1E5
EXPERIMENT T=970:2

COMMENT H E Bens, J Inst of Metals 1962 p 123
LABEL ALS

GRAPHICS 1 0.14 970 2
SET-ALTERNATE-CONDITION X(LIQUID,CU)=0.16

All commands except the last have been described above. The last command specifies
an estimated value of the liquid composition at the equilibrium. This command is not
necessary except during the alternate-mode calculation described in section 7.3.7.3.

Note that the information in this case was the temperature. One could equally well
describe the same melting point with the temperature as condition and the composition as
experimental information because both are measured quantities. The selection of quantities
used as conditions should be based on the experimental technique. Those known with the
least accuracy should be used as experimental data.

Experiments on invariant equilibria

It is a peculiarity of PARROT that invariant equilibria are the most important experimental
information to be provided for an assessment. It is thus advisable to have all invariant
equilibria for a system on the POP file, even if some of them have not been measured
explicitly. A reasonable estimate from the available experimental data can often be
sufficient, but one should be careful using phase diagrams drawn when there is little
data to limit the imagination of the artist. At the end of the assessment such estimated
equilibria should be excluded, but they are very useful for obtaining a set of initial values
for the model parameters.
An example of a three-phase equilibrium in a binary system follows:

CREATE-NEW-EQUILIBRIUM 1 1
CHANGE-STATUS PHASE FCC BCC LIQUID=FIX 1
SET-COND P=1E5

EXPERIMENT T=912:5
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SET-ALTERNATE-CONDITION X(FCC,B)=0.1 X(BCC,B)=0.4 X(LIQ,B)=0.2
LABEL AINV

COMMENT Estimated compositions

GRAPHICS 10.1912 3

GRAPHICS 1 0.2912 3

GRAPHICS 1 0.4912 3

The alternate conditions are needed only for alternate-mode calculations. Another
example of an invariant equilibrium is a congruent transformation when the composition
of both phases is the same (but may be unknown):

CREATE-NEW-EQUILIBRIUM 1 1
CHANGE-STATUS PHASE BCC LIQUID=FIX 1
SET-COND P=1E5 X (BCC,B)-X(LIQ,B)=0
EXPERIMENT T=1213:10
SET-ALTERNATE-CONDITION X(B)=0.52
LABEL AINV

COMMENT Estimated compositions
GRAPHICS 1 0.52 1213 2

With some experience from phase-diagram evaluation, it is possible to estimate
metastable invariant equilibria. In particular, such estimated metastable equilibria are
useful to reduce the number of phases to be assessed simultaneously. One may, for
example, assume that a certain intermediate phase does not form and extrapolate the
liquidus curves below the stable three-phase equilibrium and estimate temperatures and
compositions of metastable three-phase equilibria between two other phases and the
liquid.

Another useful technique is to extrapolate a liquidus line from a peritectic equilibrium
to estimate the congruent melting temperature of the compound that melts peritectically.

Ternary and higher-order experiments

PARROT can handle optimization of ternary or higher-order information in the same
way as binary. The only thing to note is that one more condition is needed for each
component added. In practice quaternary and higher-order information is used mainly to
optimize binary or ternary parameters. In ternary systems it may be more important to
use the feature that one may have uncertainties also on conditions. A tie-line in a binary
system is determined if the two phases, the temperature, and the pressure are known
and the composition of one of the phases has been measured. For a tie-line in a ternary
system, one must have measured at least two compositions, which often have the same
uncertainty. One may then assign an uncertainty to the composition selected as condition.
For example,

CREATE-NEW-EQUILIBRIUM 1 1
CHANGE-STATUS FCC BCC=FIX 1
SET-CONDITION T=1273 P=1E5 X(FCC,B)=0.1:0.02
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EXPERIMENT X (FCC,C)=0.12:.02

LABEL AFB

SET-ALTERNATE-COND X (BCC,B)=0.17 X(BCC,C)=0.07
GRAPHICS 10.10.122

GRAPHICS 10.170.07 3

The alternate conditions will be explained in section 7.3.7.3.

One problem with binary assessments is that the experimental information can often be
described almost equally well by very different sets of model parameters. It is often the
extrapolation of these assessments into ternary systems that gives decisive information
about which set of model parameters is the best. Sometimes information from several
ternary systems may be needed in order to decide on the best description of a binary
system.

Simultaneous use of binary and ternary experiments

PARROT allows simultaneous optimization of binary and ternary (and higher-order)
information. By using the CHANGE-STATUS COMPONENT command, one may have
experimental data from binary and ternary systems on the same POP file. Note that it is
not good technique to set the fraction of a third component to zero for binary experimental
information. The CHANGE-STATUS COMPONENT C=SUS is fragile, however, and
may need manual setting for it to work properly. An example of a binary three-phase
equilibrium in a ternary system is

CREATE-NEW-EQUILIBRIUM 1 0
CHANGE-STATUS COMPONENT A B = ENTERED
CHANGE-STATUS PHASE FCC BCC LIQ=FIX 1
SET-COND P=1E5

EXPERIMENT T=1177:10

LABEL AAB

COMMENT from A-B system

Note the use of initialization code 0 in the CREATE-NEW-EQUILIBRIUM command.
This means that all components must be entered.

Experimental data given as inequalities

For some experimental data one does not know the actual value, just that it must be
lower or higher than a certain value. It is possible to use such information in the POP
file by using “>" or “<” instead of the equals sign in EXPERIMENT. The number after
the colon in a factor for the “penalty function” specifies how big the error should be if
the value is on the wrong side of the inequality. The smaller the number the quicker the
error will rise. The inequality experiment is useful, for example, when a phase appears
where it should not be stable, see section 7.3.7.9, but also in other cases, for example
when a temperature or composition is not known, but it is known that it should be below
or above a certain value.
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The graphical experimental file

For plotting calculated diagrams together with experimental data, it is recommended that
the experimental data be written into the POP file so that they can be used to create a file
according to the “dataplot” format automatically. This can be done with the GRAPHICS
command shown above. The graphical format is described in the Thermo-Calc manual.
The default extension of a dataplot file is .exp. More elaborate graphics can be edited
directly in this file by use of a text editor. The command looks like

GRAPHICS <dataset> <x-coordinate> <y-coordnate> <GOC>

Use different datasets for different types of data, i.e., phase diagrams, enthalpies,
activities, etc. Each dataset can be selected separately to be overlayed on the calculated
data in the post-processor with the APPEND-EXPERIMENTAL-DATA command. The
Graphical Operation Code (GOC) can be just a number representing the symbol plotted
at the coordinate or a D, meaning draw a line from the previous coordinate to this point
(which is useful to indicate tie-lines, for example). See the Thermo-Calc manual for more
examples.

The model setup file

The second step is to create a “setup” file with the names of the elements and phases,
the models for the phases, and all known information such as “lattice stabilities” and
Gibbs energies of formation. Most values for the pure elements can be found in the
collection amassed by the Scientific Group Thermodata Europe (SGTE) and published
by Alan Dinsdale (Dinsdale 1991) or from the SGTE website (http://www.sgte.org).
These parameters can also be extracted from the PURE database, which is distributed
free with Thermo-Calc. In the Gibbs-energy module there is a command LIST-DATA
with option P that can be used to create a template setup file after extracting the data
from the PURE database. This template must be edited and new phases and param-
eters must be added. The default extension of a setup file is .TCM; this is short for
“Thermo-Calc MACRO” file. At the end of the setup file, the work file is created
with the PARROT command CREATE-NEW-STORE-FILE. The work file cannot be
edited directly and it is hardware-dependent. The default extension of the work file
is .PAR.

Models for phases

The literature with experimental data collected for the POP file usually contain information
useful for modeling the phases. If an assessment should be compatible with an existing
database, the models for most solution phases often have to be taken from the database.
For intermetallic phases it may be important to determine whether the phase has the same
structure as a phase in another system.
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In the chapter on methodology, chapter 6, the criteria for model selection are discussed
in detail. In summary, one requires

physical soundness,

as few parameters as possible that must be optimized,
reasonable extrapolations of the model, and
consistency with previous assessments.

Model parameters

PARROT has 99 variables, also called coefficients or parameters in this book, for opti-
mization and can handle up to 1000 experimental measurements, but there are limits to
the simultaneous number of variables and experiments. At each optimization the program
will list these limits. The variables are called V1 to V99 and they are used when entering
functions and parameters to be optimized. For example,

ENTER-PARAM L (LIQUID,AU,CU;0) 298.15 V1+V2*T; 6000 N
ENTER-PARAM L (LIQUID,AU,CU;1) 298.15 V3+V4*T; 6000 N
ENTER-PARAM L (LIQUID,AU,CU;2) 298.15 V5+V6*T; 6000 N

makes it possible to use three RK parameters, each linearly temperature-dependent, to
describe the excess Gibbs energy for the liquid phase in the Au—Cu system. The variables
V1 to V6 can be optimized to describe the experimental information. In the setup file
one often introduces more variables than will be needed, since it is convenient to have
them in sequential order for each phase. In some cases the model requires that several
thermodynamic parameters are related, which can conveniently be handled by using the
same variables for several parameters. For example, the ordering parameters for a B2
ordered phase can be described by

ENTER-FUNCTION GAB 298.15 V10+V11*T+GHSERAA+GHSERBB; 6000 N
ENTER-PARAMETER G(B2,A:B) 298.15 GAB; 6000 N
ENTER-PARAMETER G(B2,B:A) 298.15 GAB; 6000 N

A stoichiometric compound with measured heat-capacity data may require several
variables to describe its temperature dependence, for example

ENTER-PARAMETER G (MG2SI,MG:SI) 298.15 V20+V21*T+V22*T*LN(T)+
V23*T#* (=1)+V24*T#**24V25*T**3; 6000 N

It is possible to optimize all kinds of parameters in the Gibbs-energy systems that
can be described as functions of temperature and pressure. Examples of this are Curie
temperatures for magnetic transformations, molar volumes, and thermal expansivities,

ENTER-PARAMETER TC(SPINEL,FE+2:FE+3:0-2) 298.15 V50+V51*P; 6000 N
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File names and relations

Since all files have different extensions, it is possible to use the same name for all files
for an assessment. Thus one may have aucu.POP, aucu.TCM, aucu.exp, and aucu.PAR.
In particular, the work file (PAR) may exist in several copies during the assessment; but
it is advisable to update the text files POP, TCM, and exp to reflect all changes made
interactively in the PAR file.

The text files, i.e., the POP file, the TCM files, and the exp file, are important
documentation of the assessment. At the end these should be updated in such a way that
it is possible to run the setup file, compile the experiments, and optimize to get the final
result directly. This requires that the final weightings be entered into the POP file and the
final set of variables used as initial values. With such a set of files, it is easier to reassess
the system using new experimental data or new models.

Some care must also be taken with the work (PAR) file. This always contains the
last optimized set of variables and the weightings of the selected experimental data. The
work file contains a workspace for POLY and for GES. When a diagram is calculated
from the current work file, a POLY file is created. This POLY file will have a copy of
the current set of variables. If some further optimization is done and the user then by
accident tries to READ the old POLY file, he may destroy the new set of variables and
overwrite them with the old set. Thus one must never READ a POLY or GES file while
running PARROT, but one may, of course, SAVE new POLY or GES files, for example
when calculating diagrams from the current set of variables.

Interactive running of PARROT

With the three files POP, setup, and dataplot, the user can start running PARROT
interactively. This can be divided into some initial separate steps. Usually these steps
have to be repeated cyclically, modifying weightings, modifying models, adding new
information, etc. It is actually difficult to decide when an assessment is finished. Quite
often the deadline for the publication sets the limit for the work.

The commands on the setup file are executed by the MACRO command. There is
usually a number of error messages and the setup file must be corrected and re-run until
there are no errors. In the PARROT module one can list interactively the description
of the phases, the parameters’ expressions, and the values of the optimizing variables.
After a successful run of the setup file, this should be done to check that all models and
parameters have been entered correctly.

Compilation of experiments

The next step is to “compile” the experimental data file. The command to do this is
COMPILE. This compilation will usually also result in a number of error messages due
to syntax errors. The compilation normally stops when it detects an error and gives
an understandable message. These must be corrected and the file compiled again. It
is convenient to use several windows for this, one for editing and one for compiling.



7.3.7.2

7.3.7.3

7.3.74

7.3 The PARROT module of Thermo-Calc 229

Sometimes an error message is less understandable and the error may have occurred some
lines before the program actually discovers it. Consultation with an expert is usually the
best way to correct these problems quickly, since it can be difficult to find the right place
to look in the manual. Since the setup file and the POP file are text files, they can easily
be E-mailed to experts anywhere in the world.

Global equilibrium calculations

The global equilibrium calculation is a new feature in Thermo-Calc version R. By default
it is turned off in PARROT and, when using POLY from PARROT, one must explicitly
turn it on if one wants to use it. Be very careful doing that, since the reason it is turned
off is that global equilibrium calculations may automatically create new composition sets
and that will destroy the experimental equilibria in the PAR file.

Setting alternate mode

When the experimental data file has been compiled correctly, the first really big problem
arises. This is that one must try to calculate the experimental information from the models
of the phases. Initially all model parameters are zero and in many cases it might not
be possible to calculate a measured value from the model unless the parameters have
some reasonable values. In PARROT the alternate mode makes it possible to calculate
most of the experimental equilibria even with zero values of the variables. The command
SET-ALTERNATE-MODE ON means that experimental equilibria involving two or
more phases are calculated with an approximate technique described in section 7.3.9
below. Some extra information may be needed in the alternate mode, as described in
section 7.3.9.2. The user may exclude some of the experimental information to be used
by setting weights in the EDIT module.

The OPTIMIZE command in PARROT is then used with the alternate mode until it
has converged. Several OPTIMIZE commands are usually needed and the user may have
to change the selection of experimental data. This is again done in the EDIT module. The
result of an optimization is obtained in a form readable by a human with the command
LIST-RESULT. The workfile is continuously updated and always contains the last set of
optimized variables and calculated results. Sometimes the user may want to save a copy
of the current workfile when trying various selections of experimental data or models.
This is done by making a copy of the workfile and giving the copy another name.

Plotting intermediate results

Reading the output from LIST-RESULT is usually not enough to understand how good
(or bad) a fit one has obtained. Since PARROT is part of Thermo-Calc, it is possible to use
POLY directly to calculate the phase diagram and other diagrams with thermodynamic
properties and plot them together with the experimental data from the dataplot file. It
is important to have MACRO files with the command sequences for such calculations
because this should be done frequently. Calculating and plotting the phase diagram may
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give many surprising results when the variables to be optimized are far from their final
values! Also the fit to activities, chemical potentials, and enthalpy data can be checked
with MACRO files by comparing calculated values with the data on the EXP files.

Selection of experimental data

Initially it can be difficult to know which experimental data are good and which are
problematic; see section 6.1.2 for advice. It is also important to determine a reasonable
number of variables to be optimized; see section 6.3.

Optimization with the alternate mode using all data may give a set of initial values
for the variables that reproduces the main features of the system. If not, one may have to
exclude data and maybe phases; see section 7.3.10 for some hints.

When a first set of variables reproducing the main features of the system has been
obtained using the ALTERNATE mode, the user should SET-ALTERNATE OFF and
thenceforth calculate all equilibria using the normal mode. After turning off ALTERNATE
and entering the EDIT module, calculate all experiments with the COMPUTE-ALL
command. Several experimental equilibria may still fail to converge and the user may
have to provide initial values manually or even remove some equilibria (by setting the
weighting to zero). At a later stage in the optimization, when the optimizing variables are
closer to their final values, the user may be able to restore and calculate all experimental
equilibria.

When the selected set of equilibria can be calculated in the EDIT module, the user
should calculate all experiments once again in the PARROT module using the OPTIMIZE
command with only O iterations. The output from LIST-RESULT should be examined
carefully.

In this output the experimental information that is badly fitted will be marked with
an asterisk “*” in the rightmost column. It is not a problem that many experimental data
are badly fitted at this stage, but one should be careful with errors that the optimizer
may not be able to solve by itself. A typical case of such a problem is when a phase
undergoes congruent melting and there is experimental information on both sides of the
congruent transformation. If the composition of the phase is the experimental information,
it may happen that the calculated equilibrium is on the “wrong” side of the congruent
point and thus gives a large error. The user must correct such problems manually in
the EDIT module. A similar error may occur for miscibility gaps when the experi-
mental information is from one side and the calculation gives the composition of the
other side.

The listing of results

The LIST-RESULT command gives a list of the current set of optimizing variables and
their values and the fit to each selected experimental point. This may look like Table 7.3.

In the first section the variables are listed. The first column is the variable symbol as
used in the model parameters; one may use variables V1 to V99. The second column is the
current optimized value and the third column is the initial value of the variable. If they are
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Table 7.3 A variable and result listing produced by the LIST-RESULT command

VAR. VALUE START VALUE SCALING FACTOR REL.STAND.DEV
V1 -3.51671367E+04 -3.51671367E+04 -3.51671367E+04 1.78212695E-02
v2 4.53814089E+00 4.53814089E+00 4.53814089E+00 1.91804677E-01
V3 -5.56268264E+03 -5.56101433E+03 -5.56101433E+03 2.54804276E-01
\Z -5.35543298E+00 -5.35382683E+00 -5.35382683E+00 2.90371977E-01
V20 -2.70811726E+04 -2.70811726E+04 -2.70811726E+04 1.06182097E-02
v22 -2.77312502E+03 -2.77312502E+03 -2.77312502E+03 9.25739632E-01
V23 -1.61636716E+01 -1.61636716E+01 -1.61636716E+01 1.98209960E-01
V32 -4.76078712E+04 -4.76078712E+04 -4.76078712E+04 1.63612167E-02
V33 3.58242251E+02 3.58242251E+02 3.58242251E+02 2.04819326E-03
V34 -6.92764170E+01

V35 -5.19246000E-04

V36 1.43502000E+05

V37 -5.65953000E-06

NUMBER OF OPTIMIZING VARIABLES : 9

ALL OTHER VARIABLES NOT LISTED ARE FIX WITH THE VALUE ZERO

THE SUM OF SQUARES HAS CHANGED FROM 2.95795193E+02 TO 2.95795094E+02
DEGREES OF FREEDOM 106. REDUCED SUM OF SQUARES 2.79051976E+00

16 MUR(MG)=-6368

-6988. 4.18E+02 -619.8 -1.483
17 MUR(MG)=-4052 -4161. 3.03E+02 -109.3 -0.3606
18 MUR(MG)=-2316 -2268. 2.16E+02 48.39 0.2240
100 HMR=-3700 -3566. 6.00E+02 134.4 0.2241
101 HMR=-5610 -6161. 6.00E+02 -550.8 -0.9179
102 HMR=-6800 -7852. 6.00E+02 -1052. -1.754
316 T=1278 1273. 5.0 -5.370 -1.074
317 T=1303 1306. 5.0 2.567 0.5134
370 X(LAVES_C15,MG)=0.313 0.3169 8.00E-03 3.8732E-03 0.4841
371 X(LAVES_C15,MG)=0.346 0.3411 8.00E-03 -4.8968E-03 -0.6121

almost the same, the optimization may be almost finished. The scaling factor is usually
the same as the initial value and it is needed because the variables can be very different
in magnitude and, by dividing the values by the scaling factor, the variables’ values will,
at least initially, all be set to unity. The final column is the relative standard deviation
(RSD), which is an indication of the significance of the variable for the assessment. If the
RSD is larger than 0.5, it may be possible to set this variable to zero and still have about
the same reduced sum of squares (the last line of the second section in Table 7.3). It is
also important to know the number of significant digits in the RSD; see section 7.4.4.
Some of the variables have been kept constant during the last optimization.

After the list of variables, there follows some general information, the number of
variables last optimized, that all variables not listed are zero, and how much the sum of
squares was changed by the last optimization. The number of degrees of freedom here
means the number of experimental points minus the number of optimizing variables. The
reduced sum of squares is the sum of squares from the line above divided by the number
of degrees of freedom. If this is less than unity, it means that, on average, all experimental
data have been fitted to within their estimated uncertainties.
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Figure 7.3 Calculated versus experimental values for all experiments from a LIST-RESULT
command. If all points are on the diagonal, one has a perfect fit. Since the experimental values
have a very wide range, one may have to magnify parts in order to see details. This kind of graph
gives a clear indication of whether some experimental datasets are inconsistent with each other.

Finally, there follows one line for each selected experimental point. Only a few are
listed. The first column in this list is the number assigned to the experiment with the
CREATE command. Then comes the experimental quantity and the measured value, like
MUR(MG) = —6368. The exact meaning of the experimental value is not self-evident
from the listing; one must use the EDIT module in order to see all the conditions. The
third column shows the calculated values for the current set of variables, the fourth
column shows the estimated uncertainties, divided by the weightings assigned, and the
fifth column presents the differences between the calculated and experimental values. The
final column gives the quotient relating the fifth column and the fourth column; if this is
less than unity, it means that one has fitted the experimental value to within the estimated
uncertainty. It is the sum of the values in this column squared that is minimized.

It is sometimes useful to plot the experimental data versus the calculated data and
there is a graphical option of the LIST-RESULT command that achieves this. Such an
output is shown in Fig. 7.3.

Critical sets of experimental data and of parameters

Following the advice in section 6.1.2, a weighting for each experiment that specifies its
importance relative to all the other experiments must be determined. The following points
should be taken into account when determining this set.

The reliability of the experimental technique.

The agreement between independent measurements of the same quantity.

The agreement between data obtained with different experimental methods.

One should use only experimentally determined properties, not quantities that have
been converted.
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One should be careful about the estimated accuracy of the experiments.

One must correct systematic errors (in the temperature scale, for example).

One should bring experience from previous assessments to bear.

One should make use of “negative” information, for example that a phase should not
be stable within a certain composition or temperature region.

When a sensible weighting of the experimental data has been found, this is called the
“critical set.”

The assessor may at any time change the set of model parameters to be optimized. On
using more adjustable variables, the sum of errors usually decreases, but at the same time
the variables become less well determined. A measure of the significance of the variable
is given by the column RSD, which is listed for each variable optimized. The RSD is
important only at the end of an assessment. The meaning of the RSD is that the variable
can be changed by plus or minus this factor without changing the reduced sum of error
by more than one unit. A large RSD thus means that the variable is badly determined.
The RSD for all variables should be less than 0.5 in an acceptable assessment.

The value of the RSD is significant only when the user has run the optimization after
a RESCALE and it has converged almost immediately, when the “scaling factor” is the
same as the “value.” If there are variables with RSDs larger than unity, it means that too
many variables have been used. It is not necessarily the variable with the largest RSD
that should be removed, although that is quite likely.

The value of the RSD depends also on the weighting of the experiments. It may be
possible to reduce the RSD by changing the weightings.

If one has one or more variables with RSDs larger than unity, one should try to
remove one or more optimizing variables by setting them to zero, or to some value that
can be determined from other information, for example by semi-empirical estimation
methods.

Optimize and continue to optimize

Using the critical set of experiments, which may be modified now and again, and trying
various numbers of model parameters to be optimized, the user must use his skills to
get the best possible result. The smaller the sum of errors the better and, by giving the
command OPTIMIZE, CONTINUE, RESCALE, and OPTIMIZE again, the user may
finally reach a point at which PARROT states that it cannot improve the set of optimizing
variables. This should not be trusted, however, so a few more OPTIMIZE runs should be
done. If PARROT converges with the same number of iterations as there are variables to
optimize, one has to accept this set.

A problem with using OPTIMIZE several times to make the optimization converge
is that sometimes a variable may suddenly start to change by several orders of mag-
nitude. This behavior may lead to impossible values of variables and requires careful
reconsideration of the weighting of the critical set of experimental data and of the model
parameters that are being optimized. There is a reasonable range to which the values of
variables should be restricted. Finding interaction parameters of the order of 107 for the



234

7.3.7.9

Optimization tools

temperature-independent part and 10° for the temperature dependence is a clear indication
of a bad weighting of the experimental data or the use of too many parameters.

If the user is still not satisfied with the overall fit, he has to change the weights or
add more information to force the optimization in the right direction. The success of such
manipulations depends on the skill of the assessor.

Wrong phases at wrong places

During the optimization it may happen that a phase appears at the wrong temperature or
composition in the phase diagram. Typically a phase may be stable only on one side of
the diagram, but on calculating the diagram using the optimized variables, it may appear
also on the other side. This can be handled most easily by the DGM state variable.

For example, if fcc becomes stable at high Mg content in an assessment of the Ag—-Mg
system, one may modify an experimental equilibrium on the high-Mg side by adding
as experimental data the criterion that the driving force for fcc should be negative. For
example,

CREATE-NEW-EQUILIBRIUM 900 1
CHANGE-STATUS PHASE HCP LIQ=FIX 1
SET-COND P=1E5 X(LIQ,AG)=0.12
EXPERIMENT T=900:10

LABEL AHL

can be modified by adding two lines as below:

CREATE-NEW-EQUILIBRIUM 900 1
CHANGE-STATUS PHASE HCP LIQ=FIX 1
CHANGE-STATUS PHASE FCC=DORMANT
SET-COND P=1E5 X(LIQ,AG)=0.12
EXPERIMENT T=900:10

EXPERIMENT DGM(FCC)<-.001:.001
LABEL AHL

The DGM experiment will give a contribution to the sum of errors if fcc is stable
at this equilibrium and this will make the optimizer try to decrease the stability of fcc.
One should give a small negative number rather than zero, since fcc is stable also when
the driving force is zero. Thus fcc is set as dormant and will not affect the calculated
equilibrium, but the driving force for forming fcc will be calculated.

This type of error is common when phases are modeled for the whole composition
range but may be stable only on one side. If many RK coefficients, see section 5.6.2.1,
are used to describe the phase, then these may have unexpected and unwanted effects on
the other side.

The DGM experiment makes use of the feature in PARROT that one may specify a
limit rather than a fixed value as experimental data, as described in section 7.3.3.6.

One may use a similar method if a phase is not stable over the whole temperature
range within which it should exist. For example, when there are several intermediate
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phases in a system it may be difficult to make stable those that should be stable at room
temperature. One may then use fictitious experimental data with just the DGM experiment
to enforce the correct set of stable phases at room temperature. In many cases there are no
experimental data for the enthalpy of formation of an intermediate phase, so one should
be careful not to trust blindly hand-drawn extrapolations of stability lines.

Unwanted miscibility gaps

During an optimization it is possible that the model parameters for some phases create
unwanted miscibility gaps in the phase. A typical example is that the liquid sometimes
has a miscibility gap at high temperatures. It is possible to keep control of this by adding
some “experimental” data that should be outside the spinodal, see section 2.1.10, at a
certain temperature and composition like in this example:

CREATE-NEW-EQUILIBRIUM 910 1
CHANGE-STATUS PHASE LIQ=FIX 1
SET-COND T=4000 P=1E5 X(LIQ,AG)=0.4
EXPERIMENT QF (LIQUID)>1:.001

LABEL AQL

This equilibrium will calculate the single liquid at 4000 K and X(AG) = 0.4 and, if the
liquid is inside the spinodal, the value of QF(LIQUID) will be negative. Here it is required
that QF(LIQUID) be larger than unity in order to be on the safe side. QF is a “state
variable” in PARROT and POLY that has the value of the smallest eigenvalue of the
determinant of all second derivatives of the Gibbs energy with respect to all constituents.

One should be careful with added “experiments” like DGM and QF since they may
restrict the optimization severely. Toward the end of the optimization, when one should
be close to having found a global minimum, one should try to remove them.

Phases with order—disorder transitions

A model for a phase that can be ordered like the B2 and L1, phase will have several
sublattices with the same set of constituents; see section 5.8.4. For an experimental
equilibrium involving an ordered phase, the disordered state may become more stable than
the ordered any time during the optimization. To have control of the state of order in a
phase, one can add a function that calculates the difference between the site fractions and
returns an error if the state of order is wrong. For example, the congruent transformation
of L1, to Al in the Au—Cu system can be written

ENTER FUNCTION DL10=Y(FCC#3,CU)-Y(FCC#3,CU#3);
ENTER FUNCTION DHTR=HMR (FCC)-HMR (FCC#3) ;
CREATE 320 1

CHANGE-STATUS PHASE FCC FCC#3=FIX 1
SET-CONDITION P=1 X(FCC,CU)-X(FCC#3,CU)=0
EXPERIMENT T=683:2
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EXPERIMENT DHTR=4000:1000
EXPERIMENT X(CU)=.5:.01
EXPERIMENT DL10>0.1:0.001

The model for the ordered (and disordered) FCC phase is
(Au, Cu)y,5(Au, Cu)y,5(Au, Cu)g,s(Au, Cu)g s

and the L1, ordering (indicated as FCC#3) has a high site fraction of Au on two sublattices
and a high site fraction of Cu on the other two. The disordered phase (indicated as FCC)
has all site fractions equal in all sublattices. The congruent transformation is specified by
giving as a condition the stipulation that the two phases should have the same composition.
As experimental data the temperature, enthalpy of transformation (FUNCTION DHTR),
and overall composition are used. Additionally, a function called DL10 is used to calculate
the difference between the site fractions of Cu on the first and third sublattices. If these
are equal, the phase is disordered, which is wrong, and the value will be zero, which will
give a large error in the EXPERIMENT DL10>0.1:0.001.

One should not use the “partition model,” see section 5.8.4.2, for ordering when assess-
ing a phase with an order—disorder transformation unless one has extensive information
both on the ordered and on the disordered phase throughout the whole composition range,
as in the Au—Cu system, for example. In other cases the partitioning will create problems
because there is an ambiguity regarding how much enthalpy should be in the disordered
state and how much in the ordered. The split can be made without any ambiguity when
the assessment is added to a database.

Some more hints

Many problems and errors may occur and it is not possible to give simple explanations of
how to handle them. The main recommendation is that one should exclude all experimental
data that give strange results but make sure that all important invariant equilibria are
reasonably calculated. If some invariant equilibria cannot be calculated, it may be better
to exclude the phases that are involved in these, if they are intermediate phases, and
just optimize the liquid and the most important solution phases in a first step with a
full equilibrium calculation. When reasonable results have been obtained with the most
important phases, the intermediate phases may be put back and optimized, keeping
the model parameters for the already-optimized liquid and solid phases fixed. Consult
section 7.3.10 for more hints, since it is impossible to give any more general advice at
this stage.

Changes made interactively that require recompilation

It is possible to change almost everything from the initial setup and POP file interactively.
For example, one may add more variables to be optimized, and modify, or add more,
experimental information, but there are some changes that will destroy the data structure
and thus require that the experimental data file be recompiled. An example of such a
change is adding more composition sets to a phase. This actually changes the number of
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phases, which will destroy the links between the experimental data and the thermodynamic
models. Thus the POP file must be recompiled and it is then important that the POP file
reflect the changes made interactively in the EDIT-EXPERIMENT module.

One practical problem with recompiling the POP file may also be that the experi-
mental equilibria will be calculated with the default initial values of all compositions.
In some systems the equilibria require manual input of initial values and recompilation
of the POP file may then require careful massaging of the experimental equilibria to
make them converge again. To simplify the recompilation, it is recommended that one
use the command AMEND-PHASE in the GES module to set the major constituents for
the phases, since these are used as the default initial values (see the GES user’s guide for
details). It is possible to provide initial values of the constitutions of the phases in the
POP file. It is possible to make a new POP file from the current PAR file by giving
the command MAKE-POP-FILE in the EDIT module. However, this file does not contain
the initial tables, etc.

The alternate mode

The information that PARROT uses to optimize the thermodynamic model parameters
represents measurements at equilibrium in the system. The measurements can be made
in a single-phase region, for example activities or enthalpies, in two-phase regions,
for example solubilities or transformation temperatures, or with more than two phases
involved. At each equilibrium, at least one quantity must have been measured in addition
to those necessary to determine the equilibrium state. For a binary system in a single-phase
region, one may have measured the temperaure, pressure, composition, and chemical
potential. Three of these quantities are necessary in order to specify the equilibrium
state and the fourth can be used as experimental information to model the phase. In a
two-phase region at given temperature and pressure, one may have determined the stable
phases and the composition of one or both phases. The temperature, pressure, and set of
phases are sufficient to determine the equilibrium and the compositions can then be used
as experimental data.

Common-tangent construction

It is easy to understand that it may be difficult to calculate an equilibrium between
two or more phases when the model parameters for the phases are badly determined.
The equilibrium calculation requires that one can find a “common tangent,” i.e., that
the chemical potentials for all components are the same in all phases. Such a common
tangent might not exist or may be at a completely wrong composition or temperature for
the initial set of model parameters; see section 7.1.1.

Instead of requiring that an equilibrium should be calculated between two or more
phases, PARROT supports an “alternate” technique to use such experimental information.
The alternate technique calculates the thermodynamic properties for each phase sepa-
rately and the program uses as “experimental information” the difference in chemical
potential for the components in each phase. The model parameters are then adjusted to
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make the chemical potentials of all components the same. This is not a new technique;
it was possible to describe equilibria in this way in PARROT earlier, but it was cum-
bersome and difficult. In the BINGSS software the options IVERS=1 or IVERS=3 have
been available from the beginning, and these make use of the same technique as the
alternate mode to calculate chemical potentials for each phase separately rather than the
full equilibrium.

Preparation of the POP file for the alternate mode

Alternate calculation of the experimental equilibria with two or more stable phases is set
by the SET-ALTERNATE-MODE Y command in the PARROT module. The POP file
will usually require additional information to handle this option because there must be
enough information to calculate each phase separately. For example, if both compositions
of a binary tie-line have been measured, this may be given in the POP file as

CREATE 1 1

CH-ST PH FCC BCC=FIX 1

SET-COND P=1E5 T=1000

EXPERIMENT X (BCC,B)=.2:.01 X(FCC,B)=.3:.01

The equilibrium above can be calculated with the alternate mode without any mod-
ification. PARROT will use the values given as EXPERIMENT as conditions when
calculating the thermodynamic properties of each phase, but, if just one side of the tie-line
has been measured, one must provide an estimate of the composition of the other phase.
This can be added by the SET-ALTERNATE-CONDITION command in the POP file.
A command SET-ALT-COND is ignored unless the alternate mode is set. The same
example as above would then be

CREATE 1 1

CH-ST PH FCC BCC=FIX 1
SET-COND P=1E5 T=1000
EXPERIMENT X (BCC,B)=.2:.01
SET-ALT-COND X (FCC,B)=.3

When PARROT calculates the thermodynamic properties of the bce phase, it will use
the composition provided as EXPERIMENT. When calculating for the fcc, it will use the
composition provided with SET-ALT-COND.

A three-phase equilibrium may have some compositions determined experimentally,
with others provided as alternate conditions,

CREATE 1 1

CH-ST PH FCC BCC LIQ=FIX 1

SET-COND P=1E5

EXPERIMENT T=912:5 X(LIQ,B)=0.2:.02
SET-ALT-COND X (FCC,B)=0.1 X(BCC,B)=.4

The experiment below cannot be converted to alternate mode:
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CREATE 11

CH-ST PH BCC LIQ=FIX 1
SET-COND P=1E5 T=1111
SET-REF-STATE B LIQ * 1E5
EXPERIMENT MUR(B)=-4300:500

The reason is that there is no information about the compositions of the two phases
and, even if these were added as SET-ALT-COND, the alternate mode will end up with
five conditions for each phase instead of the correct four because the alternate mode will
keep the condition MUR(B) for both phases. The alternate mode may be able to handle
this situation in a future release.

A composition of a stoichiometric phase must be given with seven correct digits:

CREATE 11

CH-ST PHLIQ A2B=FIX 1

SET-COND P=1E5 X(LIQ,B)=0.2
EXPERIMENT T=992:5
SET-ALT-COND X(A2B,B)=.6666667

Experimental equilibria with phases with status ENTERED or DORMANT will be
ignored by the alternate mode.

The alternate mode should be used at the beginning of an assessment only, before
reasonable model parameters have been determined. When it is possible to calculate the
experimental equilibria in the normal way, the alternate mode should be turned off.

The tricks and treats

Each assessor will develop his personal relation to PARROT because it is such a rich
item of software with many unique features. However, there are some common tricks that
it may be useful to know even before the user has developed a more intimate relation
with PARROT.

1. If you have trouble, use initially as few experimental data as possible to get a
reasonable overall fit. In particular, the invariant equilibria are useful. You can also
use metastable invariant equilibria that can be estimated by excluding some phases.
These estimated equilibria should be excluded from the final optimization!

2. If you have 100 activity measurements and 10 points from the phase diagram, you
may have to decrease the weightings of the data from activity experiments.

3. It may be practical to exclude some or all intermediate phases initially and
just optimize the liquid and the terminal phases (for the pure components); see
section 6.2.4.4. In later stages of the optimization, it can be interesting to calculate
the metastable phase diagram with just these phases in order to check that the
metastable solubility lines do not have any strange kinks or turns.

4. Phases with miscibility gaps, stable or metastable, are often problematic; see
section 6.2.7. Try to keep control of the gap by use of some real or estimated
experimental information. Unfortunately, PARROT cannot calculate the top of a
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miscibility gap as a single experimental equilibrium. Use the stability function QF
to have control of any unwanted (or wanted) miscibility gaps.

5. Phases with order—disorder transformations are also problematic. They quite often
require manual input of initial values and sometimes the ordered state may disappear
during the optimization. It may help to add an experimental criterion that controls
the state of order; see section 7.3.7.11.

6. The alternate mode, section 7.3.9, is a new feature in PARROT, so no-one has
much experience with it. It should be used only to find an initial set of values
for the adjustable variables that can be used to make it possible to calculate the
experimental equilibria in the normal mode. It may also be used to get an initial
set of variables for an intermediate phase that was initially excluded, keeping the
values of already-fitted variables fixed.

7.  When the liquid and some solution phases have been fitted reasonably well, the
optimizing variables describing these phases can be set fixed and the variables for
the intermediary phases optimized.

8. Check continually that the optimized variables fall within reasonable ranges. When
a variable starts to change by several orders of magnitude in the later stages of an
optimization, one must reconsider the experimental weightings or check whether
too many variables are being used.

9. Phases that appear in wrong places can be handled with the DGM experiment; see
section 7.3.7.9.

10. A final optimization with all variables and all selected experimental information,
with the appropriate weightings, should be done. This file should be saved as
documentation of the assessment.

Time taken for stages of an assessment using PARROT

A rough and maybe very personal estimate of the time spent on various stages of an
assessment is

25% on collecting experimental data and creating, correcting, and updating the POP,
setup, and dataplot files;

25% on “optimizing the weights” to find the correct balance among various types of
experimental information and selecting a critical set of experimental information;

25% on optimizing the adjustable variables; and

25% on writing the report.

Quite often one has to go back and reoptimize when one finds that a selection or decision
made during the optimization cannot be explained or defended in the report.
Final remarks

Most of the information here can also be found in chapter 6, but repetition is one way
of learning important facts. It is rarely the case that the assessor finishes an assessment
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with the feeling that it cannot be improved. It is usually money or time that determines
when the assessment is finished.

Conflicting data

In some cases one may find measurements of the same quantity that are widely different.
All such data should be entered into the experimental data file unless there are obvious
reasons (impurity of samples, for example) why some set can be rejected. However,
during the optimization one should not include two conflicting sets at the same time but
rather use only one at a time together with the rest of the data. This follows from a
simple rule formulated by Bo Jansson, the creator of PARROT: if you have two con-
flicting datasets then either one or the other may be correct or both may be wrong.
A fitted curve in between is most certainly wrong. It is to be hoped that the optimiza-
tion can clarify which dataset is most in agreement with the other information on the
system.

There are also cases in which conflicting data cannot be detected directly. For example,
it might not be possible to reconcile activity data with solubility data from the phase
diagram. This is indicated by large errors in the fit when both datasets are included. Thus
it may be necessary to try to optimize with some datasets excluded in order to find these
inconsistencies. For more discussion on this, see section 6.4.2.

The number of adjustable coefficients

Usually an assessment is considered better the fewer adjustable coefficients are needed
to get the same fit, although it does not matter much whether 12 or 13 coefficients were
needed. However, if one can get almost the same fit with 8 instead of 12 coefficients, then
the assessment with 8 can be considered a superior fit. More of this topic is discussed
in section 6.3. However, in an assessment one may put different weightings on different
kinds of information and it is very difficult to compare assessments.

It is important to use a small number of coefficients also for the reason that the
assessment will be used for extrapolations to higher-order systems. From experience it
has been found that the fewer coefficients are used for binary systems the fewer problems
occur with higher-order systems.

Analysis of results

In section 6.6 the points to check are listed, including the analysis of the final result,
which should include the following.

A satisfactory description of the critical set of experiments.
A satisfactory description of data not included in the critical set.
A reasonable set of values of the adjustable coefficents.

Reasonable extrapolations of the thermodynamic properties, also to higher-order
systems.
e A comparison with the results obtained using other critical sets or models.
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Optimization tools

Rounding off of coefficients

At the end of the optimization all optimized coefficients have several digits that must
be truncated. There is a simple method by which to round them off when dealing with
metallic systems, by keeping as many digits as will give less than 1Jmol ™" difference at
1000 K. For aqueous systems or systems assessed for very different temperature ranges,
one may have to use other criteria. Rounding off that gives differences larger than
1Jmol™" may give detectable changes in the phase diagram or for other experimental
data.

If the coefficients have many digits, this can give an impression of high accuracy,
which fact has led to another philosophy for rounding off. In PARROT one starts this
rounding off by considering the optimized variable with the highest RSD, which is usually
larger than 0.1. This means that this variable has only one significant digit. One may
thus round it off to just one digit and trailing zeros. However, this will change the sum
of errors and the remaining variables must be reoptimized with the rounded variable
kept fixed. One should reach almost the same reduced sum of errors with the remaining
variables; otherwise the variable set fixed was not the best one to round off.

When rounding off the first variable has been successful, one may continue to round
off the new variable with the largest RSD in the remaining set by setting it fixed and
reoptimizing the rest. The RSD for the remaining variables will decrease for each variable
set fixed and, if 0.1 > RSD > 0.01, the variable has two significant digits and so on.
This can continue until there is just one variable left. The final sum of errors should not
deviate significantly from the initial one obtained when all variables were optimized. The
rounded variables are easier to handle than those just rounded with many non-zero digits.

The SGTE raw data format for experimental data

The SGTE has decided on a format for storing experimental data for use in an assessment
program. All software that is used for such a purpose should be able to read and write a
file in this format. It is important that all decisions made by the assessor on the quality
of the data and the final selection are reflected in this file, also those made interactively.
In this way it is possible to reproduce the assessment at a later time, possibly together
with new experimental data or to test a new thermodynamic model or new software. This
format is available on the website for this book.



8 Creating thermodynamic
databases

In the previous chapters it has been shown how to obtain the best possible agreement
between thermodynamic models and experimental data using adjustable model parame-
ters for binary and ternary systems. Even if each such assessment can be very important
by itself, the main purpose of these assessments is to provide the building blocks of
multicomponent thermodynamic databases. This objective must be considered when per-
forming an assessment because it imposes some restrictions on the assessment of the
individual system and on the possibilities of adjusting data and models to new experi-
mental data. Such problems will be discussed in this chapter, together with the general
concepts concerning thermodynamic databases.

Experience has shown that thermodynamic databases based on a limited number
of ternary assessments, all centered around a “base” element like Fe or Al, can
give reliable extrapolations to multicomponent alloys based on that element. This
means that the database can be used to calculate the amounts of phases, their com-
positions, and transformation temperatures and that the calculated values have an
accuracy close to that of an experimental measurement. Such databases are a very
valuable tool for planning new experimental work in alloy development, since detailed
experimental investigations of multicomponent systems are very expensive to per-
form. It is important that the databases are based on ternary assessments, not just
binaries, because the mutual solubilities in binary phases must be described, other-
wise the extrapolations are not reliable. There are also many ternary compounds that
must be in the database. The number of quaternary compounds, however, is much
smaller.

Another factor that makes ternary assessments important is that they can reveal
that many binary assessments require modification when used in ternary assessments.
There can be many reasons for this, the most important being that the experimen-
tal information on a binary system is scattered and insufficient. In such a case
many sets of model parameters can reproduce the available data in a binary sys-
tem with equal accuracy, but these parameters will give different extrapolations
into ternary systems. Extrapolations from a binary system to several ternary sys-
tems should be carried out and the results compared before a binary assessment is
accepted.
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Unary data

The data for the pure elements must be the same in all assessments in which the element
appears in order to make it possible to merge these into a database. This may be considered a
trivial statement, but, since assessments may be performed by different research groups and
over a period of several years, there is a need for international agreement on pure-element
data. In particular, data for the metastable modifications of the element are critical because
these are essential for describing solubilities. The assessment of solution phases requires
data for the “end members” of the models and, in many cases, such “end members” are
not stable, for example Cr in the fcc structure and Au in the bee structure. Data for stable
and metastable modifications of the elements, i.e. lattice stabilities, see section 1.2, have
been collected by Dinsdale (1991) and these are the recommended values. Updated versions
of this collection are available on several websites, for example http://www.sgte.org.

The accepted set of unary data will inevitably be subject to changes when new data
become available, but any attempt to improve the description of the data for the pure
elements in an assessment will make this assessment incompatible with other assessments
performed using the old value and thus not suitable for merging with an existing database.
A thermodynamic database consists of a large number of separate assessments and requires
several years’ development. The initial selection of unary data must be maintained even
if it is later evident that some values for the pure elements could be improved. Changing
an important item of unary data usually means the start of a new database.

It is important that the development of new data for unaries does not stop. The 1995
Ringberg meeting (Aldinger er al. 1995) was designated to set the foundation for a
completely new set of such data. When this work has been completed, it will be necessary
to reassess all binary and ternary systems. For a period of time assessments of new
systems may have to be done using both the new and the old set of unary data. Such
reassessments may occur even more frequently in the future and it is desirable to develop
an automatic and continuous reassessment procedure.

Model compatibility

When combining two assessments it is essential that a phase that forms or may form a
continuous solution from one binary system to another is described with the same model in
both assessments. This is obvious for the terminal solution phases, but some intermediate
phases may also exist across a system. It is then important that the models describing
the binary systems make it possible to combine these to give a single Gibbs-energy
description. The naming of such phases is a practical problem.

A simple case is a phase with fcc lattice with and without a sublattice for interstitials.
It is unproblematic to combine a model for a substitutional phase in the Fe—Cr system
with an fcc lattice with the austenite phase in the Fe—C system which has a B1 structure
with Fe and C on two interwoven fcc lattices. One just adds the interstitial sublattice to
the model for fcc in the Fe—Cr system with the vacancy as the only constituent. In the
ternary Fe—Cr—C system this phase will then form a reciprocal solution with the model
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(Cr, Fe) (C, Va). This will create a new “end member” belonging to the Cr—C binary
system, which has to be estimated (no phase with A1 or B1 structure is stable in the Cr—C
binary system).

Phases with the simple fcc, bee, and hep lattices appear in many systems, but also
many other phases with more complicated lattices, such as o and spinel phases, are
not uncommon. It is important that they are modeled in the same way in all systems.
Deciding whether two phases in different systems should be combined and, if so, what
model to select is not trivial. In the Cr—Si, Fe-Si, and Mn-Si systems there are phases
with the general stoichiometry M;Si. However, only Fe;Si and Mn;Si are similar; Cr;Si
has a different structure. A great help in identifying phases that are the same is the
Strukturbericht notation, but it is not available for many phases.

Many phases should be treated as the same even if they do not form a continuous
stable solution from one end to the other because other phases are more stable. It is very
important to identify the phases in different assessments that should be treated as the
same, because this has a large influence on the extrapolations to higher-order systems.

The recommended modeling of phases with an order—disorder transition is to partition
the Gibbs energy into a disordered part and an ordered part as described in section 5.8.4.1.
That makes it easier to combine the ordered phase with phases from other systems in
which only the disordered part may be stable. For example, the B2 phase in the Al-Ni
system should be combined with the A2 phase in the Cr—Ni system. The B2 phase with
partitioning of the Gibbs energy has one part describing the disordered part (which has
an A2 structure) and one part describing the contribution due to ordering. One can then
simply add the parameters from the A2 phase in the Cr—Ni system to the A2 part in the
Al-Ni system and keep the additional parameters for the ordered part as zero. Great care
must be taken when merging phases that have an order—disorder transition, since it is easy
to make mistakes that make the disordered state become unstable at all temperatures.

Sometimes the combination of two assessments will require reassessments of a system
in order to achieve the required model compatibility. It is strongly recommended that
one select models that are compatible with the systems with which the assessment should
be combined later. Otherwise, one should be prepared to reassess all systems for which
the “wrong” model has been used.

Experimental databases

In each assessment the assessor must create a file with experimental data used in the
optimization. In BINGSS it is the *.dat and in PARROT it is the *.POP file, as described
in chapter 7. In the experimental datafile each item of experimental information extracted
from the literature should be referenced correctly and all transformations or corrections
made from the original publication documented. In some cases the assessor may have
used theoretical information, either from publications, which then should be referenced,
or introduced as “fictitious” experimental information, for example to avoid a solution
phase appearing in a region where there is no information indicating that this phase should
be stable. This should be documented in the experimental datafile also. Each item of
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experimental information has an uncertainty that normally should have been provided by
the experimentalist, but often the assessor has to modify this uncertainty and the assessor
can also assign a weight to each experimental value. The final weightings depend on all
experimental values used in the assessment, as discussed in more detail in chapter 9.

The experimental datafile represents a large amount of work and it is important that
it is kept for future use, for example when new experimental data become available or
when a model for a phase is changed, both of which cases may necessitate a reassessment.
However, even with a well-documented experimental datafile, it is not trivial to carry out
a reassessment. The original assessment may have included conflicting datasets and the
original assessor may have selected one of these. The new information may indicate that
this selection was wrong and then a completely new assessment is required because all
weightings for various experimental data must be carefully revised.

The experimental datafiles should be kept on a public internet site and be made
available to anyone who is interested in carrying out a reassessment using a new model
for a phase or a new set of unary data, for example. The authors of this book will provide
such an internet site, from which assessors may upload their experimental datafile or
download previous files. For testing new software for assessments, it is also interesting to
have access to previous experimental datafiles. Testing new models, in particular, must
be done using identical experimental data; otherwise it is impossible to make proper
comparisons. The experimental data files are useful also when assessing a ternary or
higher-order system when it may be necessary also to vary model parameters for some of
the lower-order systems. As noted above, changes for a lower-order system may require
further modifications of other higher-order systems dependent on that system.

Naming of phases

In a thermodynamic database it is desirable to have a unique name for a phase that can
extend into a multicomponent system, even if that phase may have a different name in
each subsystem. A simple example of the problem can be found in the Ca—Mg-Fe—-O
system, where pure CaO is called lime, pure MgO is called periclase, and both of these
form a continuous solution with the wustite phase in the Fe—O system, all having the
NaCl (B1) structure type. In a database the parameters for these three phases must be
stored together with a single name. At present the name “halite” has been selected for this
because halite is a kind of “generic” name for all phases with the NaCl structure type.

For metallic systems the phases are usually given greek letters as names, starting with
a for the low-temperature form, but a-Fe and a-Cu do not even have the same lattice.
For binary systems, phase names like “(Fe, Ni)” are used for extended solution phases,
but on adding carbon, the same solution phase may be called “austenite.” In a database all
parameters for a phase with the same structure type and the same Gibbs-energy function
must be stored with the same phase name.

In a database for steel, the phase name ferrite can be used for the bec structure and
austenite for the fcc structure. However, in an aluminum database the fcc structure type
must not be called austenite and one should try to find a phase name that is independent of
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the composition of the phase. In diverse fields of science like geochemistry and metallurgy
the same phase has often been assigned different names, but it would be helpful, in
particular for students and other non-experts, if one could agree to use the same name
for the same phase for many applications.

In the assessments of a binary, ternary, or higher-order system one should thus try to
select phase names that are related to the structure rather than to a particular composition.
Some simple structures based on bcc, fcc, and hep lattices appear in many systems and,
although these notations actually characterize lattice types only, rather than a structure or
a phase, it is generally accepted to use fcc, bee, and hep as phase names. The use of these
phase names in a database can be extended to include also phases with more complex
structures, but that are modeled in such a way that the simple structure is included as a
special case. For example, the interstitial solution of carbon in austenite can be regarded
as an fcc phase even if it has a B1 structure and might be called “halite.” The TiC phase
has the same structure type and, in the Fe-Ti—C system, the Fe-rich phase with fcc lattice
with interstitial solution of C and substitutional solution of Ti can be modeled as the
same phase as the Ti-rich phase with a high fraction of interstitial C and a small fraction
of substitutional Fe. This model is actually an example of a reciprocal solution, in this
case (Fe, Ti)(C, Va); see section 5.8.1.

To go further, one must first review the various ways in which a structure type can be
designated. There are many ways to express the crystalline properties, such as in terms
of Pearson symbols, the space group, and the prototype phase; see section 2.2.3.2. All of
them are related to the crystal symmetry needed for identification of X-ray information on
a phase with given composition. This is not sufficient or even correct for a thermodynamic
identification of the phase, for example the space group Fm3m includes both the Al and
the DO; structure.

The Strukturbericht designation has the advantage that the nomenclature has no
relation to the actual structure. It consists of a letter followed by a number and pos-
sibly superscripts and subscripts. The letter A is used for phases for pure elements
(although A15 is a mistake), B for binary compounds with equal stoichiometry, C for
compounds with stoichiometry 2:1, etc. After C the letter has less obvious mean-
ing. There is no independent authority assigning these any longer, but the notation
is popular and various scientists are inventing “Strukturbericht”-like notations for new
phases.

It is generally advisable to use the Strukturbericht, if it is known, as a prefix or
suffix to a more “application-oriented” phase name. Many phases have no Strukturbericht
designation and in that case the prototype phase can be used instead. In the Strukturbericht
designation there are subscripts and sometimes superscripts. The various parts of a phase
name are usually connected by “_” (underscore), and for simplicity that can be used also
to separate subscripts or superscripts in the Strukturbericht designation, for example L1_2
for the L1, phase. This is still a matter of discussion though; in this book several styles
of phase names are used since that is the current situation.

It still remains to consider phase names when the same thermodynamic model is
used to describe several structure types, for example Al, L1,, and L1, as discussed in
section 5.8.4. Such a “structure family” is usually based on a simple disordered lattice
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such as fcc, bee, or hep and one may use this as the first part of a name. In the existing
databases there are ordered structures like B2, D05, and L2, based on the bcc lattice,
L1, and L1, based on the fcc lattice, and DO,y and B19 based on the hcp lattice. With
a four-sublattice model it is possible to treat both L1, and L1, ordering with a single
Gibbs-energy model, but, to include also DO,, ordering, eight sublattices are needed,
which is not realistic at present, so it must be treated as a separate phase. Using the
disordered lattice as the first part and the structure with the most complex ordering as the
last part, the name of an fcc phase with four sublattices for ordering is thus fcc_L1_02.

The partitioning of the Gibbs energy of a phase with B2 structure into a disordered
part (with a substitutional lattice) and an ordered part (with two sublattices), as described
in section 5.8.4.1, makes it possible to use the phase name bcc_A2 for the parameters
describing the disordered part and the phase name bcc_B2 for the ordered part. When a
user asks the database for the parameters of a system in which there is no ordered phase
with B2 structure, the parameters for the ordering may be ignored and parameters for the
disordered phase only are retrieved. However, on retrieving data for a system in which
the B2 phase may be stable, as in the AI-Ni—Cr system, it may happen that, when the user
calculates an equilibrium in which a stable phase called bcc_B2 appears, it may actually
be disordered A2. It is possible to implement in the software the use of different names
of phases depending on the composition or the state of order of a phase, but it may be
even more confusing for the user if a phase suddenly is replaced by another just because
it has undergone ordering. An interstitial sublattice for carbon and nitrogen can be added
both to the ordered and to the disordered model without changing the ordering model or
the use of a single Gibbs-energy function both for ordered and for disordered phases.

Phases with more complicated structures that are not ordered superstructures of simpler
structures sometimes have accepted names like the Laves phase, spinel, and M23 carbide.
It is recommended that such names be retained unless they are ambiguous. In the case
of Laves phases, which have the general formula A,B, there are three different structures
with the Strukturbericht names C14, C15, and C36 and it is recommended that these be
used as prefixes, for example C14_Laves phase.

A phase that has a fixed composition and does not dissolve any other elements should
normally keep its accepted name, provided that there is little or no solubility of other ele-
ments in higher-order systems. Some structure information should be added, give a name
like graphite_A9 or cristobalite_C9. If there is no accepted name, the recommendation
is to use the stoichiometric formula, possibly prefixed with some structural information,
like DO_I_MO2B5. Note that some stoichiometric phases can be stable with different
structure types at different temperatures.

Some compounds and intermetallic phases with solubilities have traditional names like
o and p, and, although the use of greek names like o, B, etc. is discouraged, names
like sigma_D8_B and mu_D8_5 are acceptable because they have been used for just one
unique structure. For carbides, names like M23C6 and M7C3 are established. Here M
stands for metallic atoms like Cr, Fe, and Mo, and C can actually be replaced by N or B,
but one should give the Strukturbericht designation as a suffix, thus M23C6_D8_4 and
M7C3_D10_1. For oxides, names like periclase_B1 (MgO), corundum_D5_1 (AL, 0,),
and spinel_H1_1 (A1,MgO,) for the respective structure types are recommended. For salt
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systems, the phase name halite_B1 is recommended for NaCl and all phases with the same
lattice. Note that halite, periclase, and an interstitial solution of carbon in fcc titanium
all have the same Strukturbericht designation, but there is no possibility of forming a
continuous solution between these extremes and thus they can be treated as different
phases.

The liquid phase usually has complete solubility of all elements and should thus be
treated as a single phase in all systems. In some systems the liquid has a large miscibility
gap and it may be tempting to treat, for example, the metallic liquid as a phase other than
an oxide or sulfide liquid and use different models for these. However, this should be
discouraged, since it is possible to change from a metallic liquid composition to almost
any other liquid composition by adding appropriate elements without passing any phase
interface. The amorphous phase can be treated as a supercooled liquid if an appropriate
glass-transition model is implemented, otherwise it should be treated as a separate phase.

Aqueous solutions and polymers may be treated as separate phases because it is not
possible to form a continuous solution with metallic or oxide liquids.

From assessments to databases

A database is a merged set of thermodynamic assessments of binary, ternary, and higher-
order systems. To create a database, one must first collect all the necessary assessments.
Each such assessment usually represents a complete description of a system and there
is thus considerable redundancy if each assessment is stored separately. It is nonetheless
important to have them separate in order to check that the unary data are identical, that
compatible models are used for the same phases, and that the parameters really describe
the system as expected.

When the assessments have been checked, the phase names should be unified. For
this there is specific software, tdbmerger, by M. Jacobs (unpublished, 1999, available
from the website of this book), which can merge database files for individual assessments
written with the Thermo-Calc package and performs several checks during the merging.
This software allows selection of data and some interactive modifications of the data in
order to make data compatible. However, if different unaries or incompatible models have
been used in two assessments, that means that one of the assessments must be revised.

The main reason for keeping individual assessments on separate files and using merging
software is to simplify the updating of a database. If the database manager at a later stage
wants to replace a binary assessment with a new, better, one, that is virtually impossible
unless the database can be merged again using the new binary data.

In some cases it may be possible to transform one model into a more general one
without reassessment. For example, a metallic liquid treated as a substitutional solution,
(A, B), may be changed by manual editing into an ionic liquid model, (A“*, B"*),(Va),,
and merged with other assessments of ionic systems, but the tdbmerger software cannot
make this change by itself.

Each thermodynamic software system will store its databases in a format unique to
that software. However, there is a definition by the SGTE for a database-transfer format
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that is close to the TDB database format used by tdbmerger. The intention is that it should
be possible to translate the SGTE transfer format to and from any specific software-
database format. The SGTE transfer format is described on the website.

The effort involved in combining published assessments to produce a validated
database is considerable and should not be confused with a simple merging of assessments.

Merging of assessments

Output from BINGSS or other software used for an assessment must first be converted
to the Thermo-Calc format. For BINGSS, conversion software, coe2ges, is available on
the website of this book. The LIST-DATA command in the GES module of Thermo-Calc
can generate a database file with option N.

The output from this LIST-DATA command will normally contain some V variables
that have been optimized. The software rvbv, available on the website of this book, will
replace the V variables by their final values.

Unassessed parameters

On merging assessments, a large number of unassessed parameters may appear. Such
parameters can be, for example, ternary interactions, but also carbides and intermetallic
phases like a Laves phase may cause problems. If the Laves phase exists in two binaries
and is modeled as (A, B),(A, B) and (A, C),(A, C), this phase will, in the database, be
modeled as (A, B, C),(A, B, C) and the parameters °Gy. and °G.p will be listed as
unassessed. By default, such parameters are treated as zero in most software, but that
might not be a good assumption.

All unassessed parameters can be listed using the GES module and the database
manager has to decide on a value of these or choose to leave them unassessed as a
warning to the users of the database.

Many such unassessed parameters can be assigned an estimated value by the database
manager because usually they have very little influence on any stable equilibrium cal-
culated with the database. The estimated parameters are usually far from any stable
composition of the phase and have no influence on the calculated equilibria. However,
the manager should be aware of the fact that the database is sometimes used also to
extrapolate to metastable states by suspending the stable phases and in such cases the
estimates may be very critical because the composition of the phase can then be far from
the stability range. Thus a clear reference must be given for each estimated parameter as
well as for the assessed parameters.

Missing parameters

Another problem that may appear on merging assessments is that phases ignored in the
assessment of a binary system may appear as stable in that system after the merger. For
example, the Cu—Fe system has no hcp-A3 phase and, in a normal assessment of the
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Figure 8.1 What may happen when a binary is added to a database. (a) The Cu—Fe system with
an ideal modeling for the hcp phase. (b) The Cu—Fe system with the interaction for the hcp phase
as for the fcc phase.

Cu—Fe system, no interaction parameter is assessed for the hcp-A3 phase. However, if
this assessment is merged with systems in which Cu and Fe dissolve in an hcp-A3 phase,
for example, Cu—Zn and Fe-Zn, the database may be used to calculate a ternary section,
Cu—Fe—Zn. The binary interaction in hcp-A3 between Cu and Fe will be zero, and, since
there is a positive interaction between Cu and Fe in the liquid, fcc-A1, and bce-A2 phases,
one will find that the hcp-A3 phase becomes a stable phase along the Cu—Fe binary, even
with very little Zn present. Unless the hcp-A3 phase is explicitly suspended, this phase
will also appear in the binary Cu-Fe system; see Fig. 8.1(a). The correct Cu-Fe phase
diagram is shown in Fig. 8.1(b). It is the database manager’s responsibility to check all
assessed systems after the database has been merged and ensure that there are no surprises.
Some software may notify the user of such missing parameters, but, in a multicomponent
database, there is a very large number of those and it is a tedious problem to handle these
for the user.

This is something to consider whenever one is adding a binary assessment to a database.
The important phases are the phases which normally exhibit large solubilities, like liquid,
fce, bee, and hep. For the liquid there will always be some parameters and, if hcp is
missing but fcc has been assessed, one should copy the same parameters in hcp as in fcc.
If there is neither fcc nor hep in a binary, one could set the regular-solution parameter for
these equal to that for the liquid or the bcc phase, whichever seems the most reasonable at
low temperature. If the bce phase is not stable in the binary, its regular-solution parameter
can be set the same as that of the liquid.

Validation of the database

Checking that the assessed systems can be recalculated from the complete database
without errors and that no new phases appear is a first step in the validation, but
it does not guarantee that errors do not appear on extrapolating to higher-order sys-
tems. The database manager must thus have experimental information on a number of
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multicomponent systems that he uses to check that the extrapolations from the assessed
systems are reasonable. These checks can be used to define the valid composition range
for each component in the database.

It may be interesting to learn from an example to do with compiling a thermodynamic
database for steels. The first SGTE solution database released in 1989 could not describe
the austenite/ferrite equilibria at 1150°C for duplex stainless steels correctly, although it
contained the best available assessments of the most important ternary and, in some cases,
quaternary systems. These steels contain high amounts of Cr, Ni, and Mo (22, 5, and
3 mass percent, respectively) and all ternaries, Fe—~Cr-Ni, Fe-Cr—-Mo, Fe-Ni—-Mo, and
Cr—Ni—-Mo, were assessed. The problem could not be solved by adjusting parameters for
alloying elements with smaller amounts. Instead, these ternaries were investigated and the
problem could be solved when it was realized that the fcc-A1l phase was being treated as
ideal in the Cr—Mo system, because it is not stable in that binary. By introducing the same
positive interaction in the fcc-Al phase in the Cr—-Mo system as for the bcc-A2 phase
and reassessing the Fe—Cr—Mo system, it was possible to get reasonable descriptions of
the duplex stainless steels.

Database management and updating

A database requires constant updating and the tdbmerger software of Jacobs was designed
for this. Updating can be of two kinds, adding new assessments or replacing existing
assessments. In order to simplify the replacement, all individual assessments used to create
a database must be kept on separate files all the time. The tdbmerger software should
merge these files each time the database is updated and it is then easy to replace one
assessment with another simply by selecting the new file for that assessment. Replacing
an old assessment or adding a new one can affect the extrapolations to higher-order
systems and this should be checked by the manager.

The estimated parameters that the database manager has added to the database should
be kept in a special “add-on” file that is merged last.

Cancellation of errors

It is important to consider that adding a binary that was missing from the original database
does not necessarily improve the database. It may actually make the extrapolations in the
database worse. One reason for this is that the manager may have added estimations of
missing parameters to the previous version of the database in order to compensate for the
missing binary. Revision of such estimated parameters can be very difficult.

Documentation of a database

Since a database is likely to be used for longer than a single manager can keep it updated,
it is important that the manager keep sufficient documentation of the systems in the
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database and of the test points he uses for the extrapolations. This makes it possible for
the next manager to continue the work on updating and extending the database.

For commercially available thermodynamic databases, a user should always request
a list of references of all assessed systems in the database. Some databases can provide
a list of references for each system retrieved from the database, which makes it easier
to verify that the database is up to date. Databases should be expected to be useful for
many years with proper updating, but it is important to know the origin of all parameters
in a database. There is a facility to reference each parameter to either a paper or any
other documentation in the database format used by Thermo-Calc, namely the so-called
“TDB format,” which is very similar to the “SGTE format for database transfer.” The
documentation of both of these is available from the appropriate websites.

Existing thermodynamic databases

Several databases are available and they are usually classified in terms of their main
component (for example, Al databases), a special physical property (semiconductors
database, superconductors database) or a class of materials (steels database, Ni-based-
superalloys database), or even a special application (solders database). More details about
existing databases and the software required in order to use them are given in a special
issue of Calphad (2002, 26, pp. 141-312).

Referencing a database

When a database is used for a publication, it should be properly referenced with its name,
supplier, and year and version identification if possible. The reference for a database is
more like describing an instrument used for a measurement than referencing an article
or book. Stating, for example, “SGTE solution database” is not sufficient because there
are many such databases. Referencing software is not appropriate because most software
can be used with several different databases. If the database supplier has a website, that
should be included in the reference.

Mobility databases

Although this whole book is devoted to thermodynamics, the fact is that computational
thermodynamics is most important for simulating phase transformations. The thermody-
namic description of the phase gives important quantities also in the metastable ranges
of the phases, such as the chemical potentials of the components and the thermodynamic
factor for diffusion. In addition, one must have mobilities of the elements in the various
phases, but that quantity usually varies more smoothly than does the diffusion coefficient.
The main problem is that there is so little experimental data, in most cases one may know
only the self-diffusion or tracer diffusion. The mobility is often closely related to the bulk
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modulus, which can easily be calculated with ab initio techniques; this is a possibility for
estimating mobilities.

There is a special version of PARROT for assessment of mobilities, either using diffu-
sion data or by fitting directly to measured concentration profiles. These assessments are
dependent on the thermodynamic descriptions, of course, since they are used to calculate
the thermodynamic factors and chemical potentials. The model for mobilities used in
PARROT is described in Campbell (2005) and is based on mobilities of each compo-
nent in each single-component phase. There are a few commercial mobility databases
available; see, for example, http://www.thermocalc.com.

Nano-materials

One new area of thermodynamic applications is to nano-materials. Real materials often
consist of several crystalline phases spatially arranged. Between the phases there are
phase interfaces where the composition and crystal lattice change. In single-phase regions
of the materials there are grain boundaries between grains that have the same crystal
lattice but varying orientation of the crystal axes. Each grain is a “single crystal” and
its size is typically of the order of 100 nm to 100 pwm. The fact that almost all inorganic
materials are “polycrystalline” is very important because that is the reason for their
isotropic mechanical properties. Only for a few applications, such as turbine blades, is
there a reason to take advantage of the fact that a single crystal has different mechanical
properties in different directions.

Thermodynamics normally applies to “bulk” polycrystalline materials when the surface
properties are several orders of magnitude less important than the bulk properties. The
phase boundaries in phase diagrams represent equilibria between two phases separated
by a planar interface. If the interface is curved, there may be a pressure term to be added
even to the “bulk” thermodynamics in order to get the correct equilibrium composition;
this is discussed in detail by Hillert ez al. (1998).

The interface region between two different crystalline grains has a larger density of
defects than do the inner regions of the grains and the atoms at the interface can have
different coordination numbers from those they have in the bulk. These factors make the
interface properties different from those of the “perfect” crystal by a factor that can reach
30%. This fact has inspired the idea of creating materials mainly formed by interfaces in
order to discover properties different from those of a perfect crystal. Reducing the size
of the grains to nanometers makes the number of atoms in the grain comparable to the
number of atoms at the interface and, as a consequence, the macroscopic properties of
the material are no longer governed by the interaction of atoms inside a crystal. These so-
called “nano-materials” can be in a metastable equilibrium or even in a “non-equilibrium”
state (Bustamante et al. 2005) and their properties will be different from those of the
equilibrium state of materials that has been treated in this book. In other cases equilibrium
thermodynamics can still be applied and an addition to the Gibbs thermodynamics of
small systems can be found in the book by Hill (1994).



8.9.1

8.9.2

8.9 Nano-materials 255

Surfaces in materials

Although this book deals only with bulk thermodynamics of materials, it is important
to mention some relations to surface properties. The grains in a polycrystalline material
usually form at solidification or when the material is recrystallized, as described in any
textbook on materials science. The internal surfaces like phase interfaces and grain bound-
aries are important for many macroscopic properties, but also for phase transformations
in materials. Grain boundaries can move and, with increasing temperature, the grains may
become very large, since this makes the surface area smaller and minimizes the energy. It
has been known for a long time that mechanical properties are usually better for materials
with small grains and much effort has been devoted to stabilizing the grain size against
changes in temperature, for example by pinning the grain boundaries by placement of
particles.

For phase transformations the relative stability of the different phases at the phase inter-
face is the most important factor determining the interface movement. Usually both the
crystal lattice and the composition change across a phase interface and thus bulk diffusion
is also needed in order for the interface to move. Even during phase transformations, it is
a useful assumption that one has “local equilibrium” at the phase interface, which means
that the compositions at the interface are given by an equilibrium tie-line in the phase
diagram. The movement of the interface and the bulk diffusion must balance to maintain
the equilibrium compositions for the two phases at the interface, taking into account that
the actual tie-line may change with time in multicomponent systems. This is used, for
example, in the DICTRA software (Andersson et al. 2002); see also section 8.10.2. When
the elements have very different mobilities, this “local equilibrium” may be replaced
by a “para-equilibrium” assumption, as discussed by Hillert et al. (1998). For rapidly
moving interfaces, one may use the “solute-drag” theory, see section 8.10.3, to describe
the transition from local equilibrium to massive transformation. All of these models for
phase transformations depend on a good description of the bulk thermodynamics.

Nucleation in materials

When a new phase wants to form, there is a nucleation stage during which the surface
energy of the new phase is just as important as, or more important than, the bulk energy.
Classical nucleation theory gives the critical radius of a spherical particle of the new
phase as

_ 20V,
T AG

r*

8.1)

m

where o is the surface energy, V,, the molar volume of the new phase, and AG,, the
difference in energy between the new and old phases, also known as the “driving force”
(see section 2.3.6).

Several models for estimating the surface energy, o, from the bulk thermodynamic
data have been proposed. Since this energy depends on many local factors, such as lattice
orientations and segregation of solute toward the boundary, such models can give only a
rough average value.
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Examples using databases

Many examples of the use of a thermodynamic database can be found in the literature,
for example Hack (1996), Kattner et al. (1996), and Saunders and Miodownik (1998).
Here, only a few examples are given.

Multicomponent phase-diagram calculations

The classical example of the use of a thermodynamic database is the calculation of the
phase diagram for a multicomponent system. An isopleth for a high-speed steel with
metal composition 4% Cr, 9% Mo, 1.5% W, 1% V, 8% Co and the rest Fe for varying
carbon content is shown in Fig. 8.2.

The reliability of any line in such a diagram calculated from a validated database
within its range of applicability is normally the same as for an experimental determination.
Since the calculation may take a minute whereas the experiment may take a month or
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Figure 8.2 An isoplethal section of a high-speed steel. The lines indicate where a phase appears
or disappears (zero-phase-fraction lines). The stable phases in some regions have been indicated;
to write all of them on the figure would be too confusing.
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longer, the gain in speed for alloy design is obvious. Of course, any conclusions drawn
from a calculation must be verified experimentally, but one can reduce the number of
experiments needed significantly. In addition, the calculation can be used also to obtain
chemical potentials, heats of transformations, and amounts and compositions of individual
phases for any temperature and overall composition.

The equilibrium phase diagram will normally deviate from the behavior of any nor-
mal material that has been processed too quickly to obtain full equilibrium. Below
800°C diffusion, except of carbon, is usually too slow to produce the equilibrium set of
phases.

Simulation of phase transformations

A thermodynamic database is developed to describe the stable state of a system, but it
provides the possibility of extrapolating outside the stability range because the modeling
of each phase is usually done for the whole system. This is a very important feature when

Figure 8.3 Concentration profiles of Cr across the interface after various times. The origin of the
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there is an interest in describing phase transformations since it provides the possibility of
calculating driving forces for nucleation and the thermodynamic factor for diffusion also
outside the stable equilibrium. In order to simulate processes and other transformations
together with kinetic data for mobilities, accurate values of such thermodynamic properties
are essential.

The DICTRA software (Andersson et al. 2002) was developed to handle phase trans-
formations, including diffusion in multicomponent alloys, which can be simulated along
one spatial coordinate. The application selected here is the dissolution of a spherical
cementite particle in an Fe-Cr—C matrix. The cementite particle was formed at low
temperature in equilibrium with ferrite in order to have an equilibrium partitioning of
Cr and C. The material was then heated to 1183 K, the ferrite transformed to austen-
ite, and the particle started to dissolve in the austenite matrix. In Figs. 8.3(a)—(d) the
concentration profiles of Cr around the interface after various times are shown. At the
interface it is assumed that one has equilibrium partitioning of Cr and C, but since C can
move much faster, there is a very sharp concentration profile for Cr. Measurements of
the concentration profile from Liu et al. (1991) are shown together with the calculated
profile.

The interface between the cementite and austenite cannot move until the Cr concen-
tration in the cementite particle begins to become more uniform. In Fig. 8.4 the volume
fraction of the particle is plotted versus time. The experimental points at short times
are very uncertain and deviate from the calculation, but the simulation predicts cor-
rectly the amount of carbide after a long time. The dissolution of a cementite particle
in a binary Fe-C alloy takes less than a second, as a comparison. The Cr content of
the alloy thus has the effect of slowing down the transformation and that is correctly
predicted by the simulation. The simulation is based on independent thermodynamic
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Figure 8.4 The volume fraction of carbide.
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assessments of the Fe—Cr—C system and mobilities of Cr and C in austenite and cementite.
The experimental data shown in the figures have not been used to fit the simulation.

Solute-drag simulations

The solute-drag model was developed to explain how grain-boundary mobilities could
depend on the concentration of solutes at the grain boundary (Liicke and Detert 1957,
Cahn 1962, Hillert and Sundman 1976). This has been extended to phase inter-
faces (Hillert and Sundman 1977) and, more recently, to multicomponent systems (Hillert
and Schalin 2000). The interesting feature of the solute-drag theory is that it gives a
continuous curve of the Gibbs energy across the phase interface between two different
phases as shown for a binary system in Fig. 8.5.

The dotted curve in Fig. 8.5 represents the Gibbs energy at any position across the
interface and is simply given by the equation

G, = XGu™ + (1= )Gy (8.2)

where y is the length coordinate across the interface, going from zero to one. At y =0

one has only fcc with the composition xfBCC/ "and at y = 1 one has only liquid with the

composition x{{uqmd. In between the composition varies between these limits and the
Gibbs energies of the two phases can be calculated from the thermodynamic models using
the same composition for the same value of the coordinate y. Note that the equilibrium
compositions for the fcc and liquid phases are given by the common tangent. When
the interface is moving the composition at the interface of the growing phase can differ

from the equilibrium composition, but the composition at the interface of the shrinking
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Figure 8.5 Gibbs-energy curves related to an interface between the liquid and fcc phases.
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phase must always be inside the two-phase region. These compositions as well as the
composition profile across the interface can be solved using a differential equation as
described in Hillert and Sundman (1977).

The phase-field method

The simulation of phase transformations in two or three dimensions is based on the
phase-field method, since it is impossible to treat directly the movement of “sharp”
individual phase interfaces in two and three dimensions in the same way as is done in
DICTRA for movement in one dimension. Instead a grid is imposed and the amounts of
phases at each grid point are calculated by the phase-field method, which is based on
thermodynamics and kinetic data, i.e., a “diffuse” interface. The first simulations using the
phase-field method had very simple thermodynamic descriptions and a single continuous
Gibbs-energy function across the composition range. This would apply only to ordering
transformations in which the ordered and disordered phases have the same Gibbs-energy
function. The phase-field method combined with realistic Calphad databases has recently
been applied to a variety of phase transformations (Grafe et al. 2000, Warnken et al. 2002,
Qin and Wallach 2003, Loginova et al. 2004, Zhu et al. 2004, Bottger et al. 2006).

Figures 8.6 to 8.8(d) show a simulation of equiaxial solidification of an Al alloy using
MICRESS phase-field software (http://www.micress.de), the TQ interface of Thermo-
Calc (http://www.thermocalc.com) and the COST-507 light-alloy database (Ansara
1998a). The alloy contains xy, = 5.53 at%, xy;, = 0.401 at%, and the rest is Al. The
figures show the formation of the fcc, AlcMn, and AlIMg-f3 solid phases from the
liquid.

In Fig. 8.6 the cooling curve of the alloy is shown. In the first part of the curve
dendrites of Al are formed. The start of the solidification of Al dendrites is magnified
in Fig. 8.6(b), which shows that a slight undercooling is necessary to nucleate the solid
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Figure 8.6 The temperature—time curves for solidification of an Al-Mg—Mn alloy at constant
heat flux. In (b) a magnification of the first part of the curve in (a) is shown. Courtesy of Bernd
Bottger.
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Figure 8.7 The phase diagram for Al-0.4Mn-Mg is shown in (a). A curve of the fraction of solid
versus temperature from a Scheil-type solidification simulation is shown in (b).

phase. After most of the alloy has solidified, the Al;Mn starts to form and finally also
AlMg-. This four-phase equilibrium is an invariant reaction in the ternary system and
the temperature remains constant.

The cooling curves can be related to the calculated phase diagram in Fig. 8.7(a) from
Ansara (1998a) and compared with a “Scheil-Gulliver” (SG)-type solidification (Gulliver
1913, Scheil 1942) calculation shown in Fig. 8.7(b). The alloy composition is shown as a
dotted line in Fig. 8.7(a). When it starts forming fcc (Al dendrites), the liquid composition
will move toward higher Mg content until the Al;Mn phase starts to form also. That
temperature is marked in Fig. 8.7(b). In the SG simulation no diffusion takes place in the
solid phases and the liquid is assumed to be homogeneous.

The following figures are from simulations obtained using the phase-field method
and show the development of the microstructure in two dimensions. In Fig. 8.8(a) the
temperature is just below the liquidus temperature and the formation of Al dendrites
has just started. The compositions of the components are indicated by the grayscale. In
Fig. 8.8(b) the dendrites have grown and one can notice a gradient in composition from
the center to the interface with the liquid.

In Fig. 8.8(c) the precipitation of Al;Mn can be seen to have occurred inside the liquid
phase, but this cannot be noticed on the cooling curve because the latent heat is very
small. Finally, in Fig. 8.8(d) the dissolution of the Al;Mn phase has started and the final
liquid transforms to fcc and AIMg-f3.

In the phase-field method the surface energies and interface mobilities play an impor-
tant role. Such quantities are even more difficult to assess than the thermodynamic and
mobility data. Often one can only vary these in a simulation model until one finds agree-
ment with a real microstructure, but using validated thermodynamic databases makes it
easier to find realistic values for these quantities.
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Figure 8.8 Steps in the phase-field-method simulation of the solidification. (a) Temperature just
below liquidus after 1s, the Al dendrites have nucleated. (b) The Al dendrites have grown after
165. (c) The dendrites after 40 s and the AlgMn phase has nucleated in the liquid. (d) The material
is now completely solidified. The composition is displayed as a grayscale. The formation of the
second solid phase in the liquid is shown in (c). In (d) the alloy is completely solid. Courtesy of
Bernd Bottger.

However, there are many problems still to solve, such as that of which value of the
Gibbs energy to use across a phase interface. Various approximate methods have been
applied in various forms of software, but, unfortunately, there is still little interest in
developing this further because the thermodynamic coupling slows the software down
considerably and many software users have more interest in producing nice graphs than
in realistic microstructures.

The technique from the multi-component solute-drag theory (Odqvist et al. 2003)
which is used to connect the Gibbs energies across the interface is applicable also in
the phase-field method. One can simply calculate the Gibbs energy at any point in the
interface as the weighted average of the Gibbs energies of the phases involved, calculated
for the same composition in all phases and using the amount of the phases as weighting:

Gl =Y m*Gy(T, P, x;) (8.3)
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Some of the phases may be ordered and then the Gibbs energies for those phases must
be calculated using the site fractions with the constraint that the mole fractions are the
same as for the other phases.

If any phase has a stoichiometric constraint so it does not have a Gibbs energy value
for all compositions, one can either assess the phase with another model with extended
(metastable) solubility or assume some reasonable value of the missing Gibbs energy.
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Case studies

The systems described here are real assessments, most of which have been published
and the reference is given; but the descriptions here include some of the mistakes made
when solving the problems leading to the publication. Such things are never included
in the final publication. Discussing such problems does not mean that the assessment
technique described here is bad or wrong, only that learning from mistakes is the only
way to become a successful assessor, in the same way as many mistakes are inevitably
made before one can learn how to be a good experimentalist.

A complete assessment of the Cu-Mg system

The Cu-Mg system published by Coughanowr et al. (1991), shown in Fig. 9.2 later, is
very simple but offers some interesting examples of modeling. Assessments with two
different software packages will also be discussed.

Physical and experimental criteria for solution model selection

There are five phases in the system, the liquid phase, the Cu phase with fcc lattice with
some solubility of Mg, the Mg phase with hcp lattice and hardly any solubility of Cu,
and two intermetallic phases:

e (CuMg,, a stoichiometric phase, and
® (Cu,Mg, with some range of homogeneity, having the cubic Laves-phase structure,
C15 in the Strukturbericht notation.

The Laves phase Cu,Mg

The range of homogeneity of the Laves phase is very well determined experimen-
tally; it deviates on both sides from the ideal composition of 66.7% Cu. The cubic
Laves-phase structural type has the following crystallographically equivalent atomic
positions:

264
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Pearson symbol: cF24

Space group: Fd3m
8 Mg: 8(a) 1/8, 1/8, 1/8;  7/8,7/8, 7/8
16 Cu: 16(d) 172, 172, 172, 1/2, 1/4, 1/4;  1/4, 172, 1/4;  1/4, 1/4, 1/2

The physical background that determines the formation of Laves phases is close
packing of atoms of two different sizes. In a hard-sphere packing model the ideal ratio
of the atomic radii is 7, /rg = 1.225; in practice it is known that the ratio of pure element
radii can vary from 1.05 to 1.68 in various systems. Although the ideal crystal structure
has been very well studied, there is no systematic evidence giving a hint about the species
occupancies for both sublattices on the Cu- and Mg-richer sides of the off-stoichiometric
ranges.

In order to model this phase using the CEF, some assumptions should be made.
According to the crystal structure, the description should present exactly two sublattices,
the first for the 16(d) Cu atoms and the second for the 8(a) Mg atoms.

In order to describe the experimentally determined range of solubility, anti-site defects
will be used, i.e., Cu atoms will occupy sites in the Mg sublattice and Mg atoms will
occupy sites in the Cu sublattice. Note that this is just a model for the crystallographic
occupancy, since the true nature of defects enabling the compositional range of stability of
the phase has not been determined experimentally (e.g., by measurements of the lattice
parameter versus x) or even theoretically. The model is then given by (Cu, Mg),(Mg, Cu).

This assumption is not demonstrably true, but, since the stabilization of the Laves
phase tolerates some deviation of the atomic radii of the components at the ideal com-
position, one can imagine an “effective” Cu radius that includes some Mg atoms and
vice versa. In the small range of solubility of this phase, this should be a reasonable
approximation.

The existence of vacancies in both sublattices would also allow the deviation from
stoichiometry; however, in a close-packed structure, the vacancy probability is not
expected to be large. The CEF for the selected crystallographic model is given by

G?(T,x) = H*® (298K) = G, g, - (1 =) (1 =)
+Ge e, (=3
+G$g,,;mgq Y (1=y")
+Ggyica, Y Y
+R-T-{p-[(1=y)-In(1 =y)+y"-In(y)]
+q-[(1=y")-In(1 =y")+y"-In(y")]}
+ LY g (1=Y) 3 - (1 =)

+ 0Lgu,Mg:Cu : (1 _y/) 'y/ 'y//
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This is the expression for the Gibbs energy of one mole of the phase (three moles of
atoms). The first term in this summation expresses the Gibbs energy of the ideal com-
pound. The second and third terms are the Gibbs energies for pure Cu and pure Mg, respec-
tively, in a metastable state with the Laves structure. The fourth term describes the Gibbs
energy of the metastable Laves phase containing only anti-structure (anti-site) atoms.

Lattice stability

Since the stable pure Cu phase has the fcc-Al structure, the end member Cu,Cu in a
Laves-phase state is not stable. The same is true for the end member Mg,Mg. One should
have a value that expresses the difference between the Gibbs energy of the stable phase
of the pure element phase and the Gibbs energy of these end members.

These differences are not determined experimentally and can be provided by band-
structure total-energy calculations, ab initio, if the C15 structure is dynamically stable for
the pure elements. If there are no values for these differences, a reasonable value should
be chosen. This value must be selected carefully, since it must be used for all binary or
higher-order systems with Cu or Mg dissolving in a cubic (C15) Laves phase.

In the published assessment of the Cu—Mg system by Coughanowr et al. (1991) these
differences, the lattice stabilities, were obtained as an extrapolation of the Gibbs energy
of the Laves phase to the pure elements. However, in a further update of the system
in order for it to be used in the COST507 Al light-alloys database, a value of 5000J mol '
of atoms relative to the SER was arbitrarily chosen.

The selection of the adjustable model parameters for all the phases present in this
system is well discussed in the original paper. The same assumptions were used in the
more recent update of this description used in the COST507 database.

The files containing the original description in the Lukas program format (cumg.coe)
are given in the website directory related to this chapter. The present COST507 description
is also available in Thermo-Calc format (cumg.tdb).

The original experimental data (cumg.dat) file in Lukas format was translated into
the Thermo-Calc format (cumg.pop) using the dat2pop.exe software (ftp account). The
obtained pop file was used in the following optimization using PARROT.

In Fig. 9.1 the enthalpies of the fictitious states of the Laves-phase model for various
compositions are shown. The stable composition is Cu,Mg.
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Figure 9.1 A schematic figure of the enthalpies of the Laves phase.
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Figure 9.2 The calculated phase diagram for the Cu-Mg system.

In Fig. 9.2 the calculated Cu—Mg phase diagram is shown. In Fig. 9.3(a) the calculated
Gibbs energies at 1000K are shown. In the original assessment the hcp was treated
without solubility of Cu since no experimental solubilities were available. When the
system was added to a database, an ad-hoc interaction parameter was added to describe
a low solubility. This was, probably by mistake, set to be positive, which creates a
metastable miscibility gap in hcp. According to the recommendations in section 8.5.3,
the hcp phase should have an interaction parameter equal or similar to that of the fcc
phase.

In Fig. 9.3(b) the calculated enthalpies at 1000 K are shown. The miscibility gap in
hep is explained in connection with Fig. 9.3(a). The enthalpy of the Laves phase has a
“V”-shaped enthalpy due to the anti-site defects used. In fact, the model used here for
the Laves phase is a Wagner—Schottky model as described in section 5.8.2.3.
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Figure 9.3 The calculated Gibbs energies (a) and enthalpies (b) for the Cu—Mg system, both at
1000 K.

Assessment showing features of PARROT

The Cu-Mg system assessed by PARROT is now described as a comparison with the use
of BINGSS software for the same problem. The choice of models and the experimental
data are described above. The choice of optimizer is mainly dependent on the availability
of someone who can answer questions, but one of the advantages of PARROT is that it
can treat ternary and higher-order systems; also it is extremely flexible.

It must be emphasized that BINGSS, PARROT, and other software for assessment
of thermodynamic data can never be used as a substitute for an understanding of
thermodynamics and phase diagrams. They are just tools that make it possible to han-
dle large amounts of diverse types of data when trying to model a system. They are
indispensable for the creation of large validated databases.

The setup file and experimental data file

As described in section 7.3 on software, two files should be prepared before the assessment
starts. One is a file with data for the elements, phases, and models (the “setup” file).
The other contains the experimental data (the “POP” file). These files may need changes
during the assessment and at the end they should reflect the final choices of models and
experimental data. The original files for BINGSS were converted using the conversion
software and, to make it easier to understand, the file has now been edited and put into a
form suitable for interactive use in PARROT.

It is also advisable to have a file with the experimental data in a format that is suitable
for use in the graphical post-processor. It is often easier to see differences on a diagram.
It is also useful to have some additional macro files to calculate and plot results together
with the experimental data.
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The setup file is a macro file that is run using the macro command in Thermo-
Calc. It creates a “work” file in PARROT with the elements, phases, and models with
parameters to optimize. The experimental data are then compiled:

tc

SYS: macro cumg
....output deleted
PARROT:compile
input file: cumg
....output deleted
PARROT:

After this, the user continues to run PARROT interactively in order to obtain the
best set of parameters to describe the experiments. For description and explanation of
the various commands, please read section 7.3 about PARROT or the PARROT user’s
guide. It is the responsibility of the user to select the best experimental information and
determine what to keep if there are conflicting experimental data. One should not keep
two experimental datasets that are in conflict because that will confuse the optimizer.
With PARROT it is possible to change the selection interactively at any time if all data
are in the POP file. The use of LABEL and COMMENT in the POP file to identify
different datasets is recommended, since that simplifies later selection.

The alternate mode

In order to minimize the error between the experimental data and the corresponding values
calculated from the models, it must be possible to calculate the experimental equilibria.
Since the parameters in the thermodynamic models that should be assessed are initially
zero, it might not be possible to calculate some equilibria corresponding to experimental
points.

PARROT has a special mode called alternate to find initial values of model
parameters. The reason for having an alternate mode is to handle initial values of
model parameters using an alternate equilibrium calculation as described in section 7.1.1.
Experimental equilibria involving two or more phases might not exist if the start val-
ues of the parameters are zero. The alternate mode in PARROT is further described
in section 7.3.7.3. When the alternate mode has found a set of values for the model
parameters that makes it possible to calculate the experimental equilibria using normal
equilibrium calculations, one should turn off the alternate mode.

The number of experimental data is very large for this system. To make it easier to
explain using PARROT, one can first try to fit just the single-phase data in the liquid phase
and the invariant equilibria. To select experimental data, one uses the set-weight command
in the EDIT module. In the EDIT module the experimental data must first be read from the
work file. Setting the weightings to zero for all equilibria and then to 1 for the equilibria
with label ABA means that one will use only the experimental data with that label:

PARROT: edit

EDIT: read 1
EDIT: set-weight 0 first-last
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EDIT: set-weight 1 aba
EDIT: select-equil first
EDIT:compute-all

EDIT: save

EDIT: back

PARROT: opt 0

PARROT: list-result,,,

After having set the weightings, the first equilibrium was selected and all equilibria
were calculated to check that there were no errors. Finally, all changes were saved back
to the file. The first time the equilibria are calculated usually reveals some errors in the
input POP file. These should be corrected by editing the POP file, of course, and the
compilation and calculation run again.

It is essential to use SAVE in the EDIT module in order to make any changes there
permanent. The command BACK goes back to the PARROT module and it is advisable
to calculate all equilibria once again by activating the command OPT 0. The command
LIST-RESULT will write a condensed output of all experimental data and their currently
calculated values; see Table 7.3. It may be necessary to go to the EDIT module again many
times and correct or modify the initial compositions or weightings of the experimental
equilibria before the first real optimization in order to have a good set of experimental
data to optimize.

The first diagram

When the optimization with the alternate mode has converged, it is possible to calculate
the phase diagram and other thermodynamic properties and compare the simulation
graphically with experimental data. This is done by running a macro file for this in the
PARROT module. Of course, it is possible to do such calculations interactively, but,
since they may be done very often, it is convenient to have the necessary commands on
macro files.

The calculated diagram shown in Fig. 9.4(a) together with experimental data has the
main features correct and further optimization will most certainly lead to a correct diagram,
maybe after adjusting some of the weightings of the experimental data. However, in
Fig. 9.4(b), which was optimized with the same experimental data but a slightly different
set of parameters, the fcc phase has become much too stable and one has to change
strategy a little in order to achieve good results. The recommended method is to optimize
fewer parameters initially and maybe only two or three of the phases, for example the
liquid and the terminal phases.

One may wonder what the optimizer is doing when it produces a diagram like
Fig. 9.4(b), but actually it has done quite a good job of fitting the liquid and solid com-
pounds as shown in Fig. 9.4(c), which was calculated with the same set of parameters
as Fig. 9.4(b) but with the fcc phase suspended. In the experimental data file (POP file)
the equilibria are usually created with just the known phases set stable, with all others
suspended. During the optimization, other phases more stable than those in the POP file
may appear. It is possible to add other phases as DORMANT, for example, and set as
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Figure 9.4 The first calculated phase diagram after optimizing with PARROT using only
alternate mode. In (a) the features of the diagram are correct and, with further optimization using
normal mode, the congruent-melting temperatures will change and the liquidus curves will be
correct. However, often the first diagram calculated during an optimization is far from correct. As
an example, in (b) a Cu-Mg diagram in which the fcc phase has extended far across the system is
shown. In (c) the metastable diagram without fcc for the same set of parameters as in (b) is
shown; see the text for an explanation.

an experimental criterion that their driving forces should be negative. Such things are
typically done interactively when necessary. The number of experimental points for fcc is
fewer than for the compounds and, depending on the parameters selected to be optimized,
results like those in Figs. 9.4(b) and (c) are not unusual until one has found the most
reasonable set of parameters that should be included in the optimization.

The normal mode

When the optimization with the alternate mode has converged, the user must switch
off the alternate mode. After turning off the alternate mode, he must try to calculate
all experimental equilibria in the EDIT module. This is done by setting the weightings
of all experimental data to unity. Some equilibria may fail to converge, but it is not
necessary at this stage to include all of the experimental data. The most important
experimental equilibria to be included are the invariants, such as eutectics and congruent
transformations. If some invariant cannot be calculated, it may be better to exclude
optimization of some parameters of the corresponding phases and try to optimize them
later when a good representation of the other phases has been obtained. Maybe the
alternate mode will have to be used again to obtain initial values for such parameters.

One should not switch back and forth between alternate and normal mode. The alternate
mode should be used only to find initial values for parameters so that normal-mode
calculations can be used.

When starting to use the normal mode it is important to rescale the variables. The
RESCALE command will set the current values as initial values and scaling factors.
This makes it easier for the optimizing software to vary them to obtain the best fit. The
complementary command RECOVER will overwrite the current values with the initial
values and thus make it possible to restore the previous set of parameters. Note that this
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will not restore the compositions and temperatures for the experiments and it is usually
necessary to calculate all equilibria in the EDIT module after a RECOVER command,
and maybe also correct problems with convergence. For this reason it is advisable to
make copies of the PAR file now and again, to make it easier to start again from an
earlier point when the optimization fails.

At this stage it is also important to look carefully at the error for each experiment
and try to identify conflicting and inconsistent information. A selection of the consistent
data must be made, otherwise the optimization will not be able to give any reasonable
result. The selection of data is made in the EDIT module using the weightings. It may
also be necessary to add information that was not originally included in the POP file. For
example, a phase may appear in the wrong part of a phase diagram. A convenient way
to suppress such a phase is to add the lines

CHANGE-STATUS PHASE phase = DORMANT
EXPERIMENT DGM(phase)< -0.01:.001

These lines can be added to some existing experimental information for the composition
and temperature range where the phase appears. The state variable DGM(phase) is the
driving force for “phase” and, if this is negative, the phase is unstable. With this additional
information, PARROT will try to change the parameters of all phases to achieve this.
Such changes of the experimental information can be made directly in the POP file.

It is also possible to change the set of model parameters to be optimized in order to
find a better solution. In general, the fit is improved the more parameters are added but is
better the fewer parameters are used. Below will be described how to determine whether
too many parameters have been used. Changing the set of parameters may require a return
to the alternate mode in order to determine initial values. It is advisable to have copies of
the PAR files that represent the best set of parameter values for each set tried because it
is not always easy to reproduce a fit that has once been obtained but for which the PAR
file has been lost. The current PAR file, selected by the SET-STORE-FILE command in
the PARROT module, is continuously updated to the last optimized set. If the user wants
to retain a copy of the present results before continuing, he must copy the PAR file using
commands in the operating system of the file manager. When the user has several such
PAR files, he may compare the results using various selections of experimental data and
parameters.

In the assessment of the Cu—Mg system, the result of experiment 205 was found to
be inconsistent with the other liquidus information, for example equilibrium 297, so its
weighting was set to zero and the parameters were optimized again.

Large numerical values

Optimizations should continue until PARROT thinks it has found a minimum. If the
weighting and selection of the experimental information is not done carefully, it some-
times happens that the optimized parameters reach very large values. The user must
then again carefully examine his experimental data and their weightings. He may also
have to reduce the number of parameters to avoid having large numerical values of
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parameters compensating for each other. For example, if the temperature range of data
for a phase is very small, the temperature dependence sometimes appears to be very
large. That happens typically if the temperature dependence is not determined by the
experimental information. Then one has to set a constraint relating temperature-dependent
and -independent coefficients of the parameter in Eq. (5.13) or Eq. (5.66), as suggested
in section 6.2.1.3. Another way to avoid this is to use the same temperature-dependence
coefficient for several phases. Such tricks should be used only when there is a theoretical
foundation.

The final steps

When PARROT has reached a minimum for the selected set of experimental data and
parameters and the user is satisfied with this, or fed up with the system and software, there
are still some final checks that should be made. The criterion for reaching a minimum,
which may be a local minimum, is that the optimization terminates with as many iterations
as there are parameters to be optimized.

The first check may be to ascertain that the parameter values are reasonable. It may be
very difficult for a beginner to decide, but, as a general rule, enthalpies should not exceed
a few times 100kJmol " and entropies should not exceed few times 10Jmol ' K~'. One
may use the experimental information on enthalpies of mixing or formation to estimate
a reasonable range of values. If several coefficients in the excess parameters are used,
these should not increase with the increasing degree.

Another thing to check is whether the number of parameters used is reason-
able. Since the sum of errors usually decreases with the number of parameters, it
may be tempting to use as many as possible. There are several problems with hav-
ing many parameters, though. One problem is that the values of the parameters are
less well determined or significant the more parameters are used. The significance
of the value of a parameter is given by the column labeled REL.STAND.DEV,
which is shown for each parameter in the LIST-RESULT and LIST-ALL-VARIABLES
commands.

In order for values in this column to be significant, the user must have rescaled the
variables before the last OPTIMIZE command and the parameter values must be almost
the same as the initial values and scaling factors. This is necessary in order for values
in the final column, “REL.STAND.DEV” (relative standard deviation), to be significant.
Study the values in this column carefully. The value in this column shows how significant
the parameter value is. One may change the parameter within the range of this standard
deviation and the reduced sum of errors will then change only by unity. Parameters
with large REL.STAND.DEV may be set to zero and the optimization re-run with fewer
parameters will still give almost the same result.

In the Cu—Mg case the REL.STAND.DEV is around 0.8 for one of the parameters in
the CuMg, phase. One may thus change this parameter value by 80% and still not change
the sum of errors significantly. In this case it is not possible to put it to zero, but maybe
it could be rounded off to a value like 2 to indicate that it is not well determined. The
other parameters must then be optimized again to obtain the best fit with this new fixed
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Figure 9.5 The calculated phase diagram for the Cu—Mg system extending to high temperatures.

parameter value. The values of REL.STAND.DEV for these parameters now generally
tend to be smaller as they become more well determined. One may continue this rounding
off of parameter values, but this is a matter of taste for the assessor.

Why constant updating is needed

After all the efforts put into this assessment by experts of types 1 and 3, a recent use of this
system revealed some problems. A calculation of the system at much higher temperatures
than had been considered during the assessment showed that the Laves phase becomes
stable above 3000 K as shown in Fig. 9.5.

This is due to the fact that the heat-capacity expression of the Laves phase can be
assessed only up to the melting temperature. The term as-T° of the G description
contributes as 6as-T* to C »» leading to impossible values at very high temperatures. The
simplest solution is to set breaks in the parameter descriptions of the end members of
the Cu,Mg model slightly above the melting temperature (e.g. 1100 K) and continue with
descriptions using only ay, a,, and a,, corresponding to constant C,,.

Checking metastable diagrams: the Ag-Al system

This binary system presents interesting features with which to illustrate many of the
comments in the methodology chapter. The Al and Ag phases are both terminal fcc solid
solutions that present extended ranges of homogeneity. These terminal solid solutions are
modeled as the same phase. Two intermediate solution phases are stable in this system;
they are disordered and their crystal structures are different from those of the terminal
solutions: one phase is an hcp and the other is a bce phase.

When modeling phases, one should take into account that not only the stable calculated
phase diagram but also metastable diagrams should be reproduced by the calculations.
Having reasonable metastable descriptions increases the quality of extrapolations to
higher-order systems.
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The stable phase diagram assessed by Lim ez al. (1995) is shown in Fig. 9.6 together
with several metastable diagrams with only selected phases. In Fig. 9.6(b) it is shown
that the fcc phase has a metastable miscibility gap. In Fig. 9.6(f) the stable phase
diagram is shown overlayed with the metastable solubility lines from the previous
diagrams.

When a phase is stable only within a small composition range but the model extends
across the whole system one must take care to ensure that the phase behaves reason-
ably well. In Fig. 9.6(d) the metastable fcc + hep diagram is shown and its shape is
strange. The reason is that the excess parameters in the hcp model have been fitted
to the small stable composition range. However, hcp and fcc are very similar; both
have 12 nearest neighbors and the regular-solution parameter should be almost the
same for hcp and fcc since it depends mainly on the first-nearest-neighbor interaction.
Higher-order coefficients in the RK series may be different, but as a rule of thumb
one should have the same regular-solution parameter in fcc as in hcp. However, this
“rule” is quite recent and one will normally not find that it is used in any existing
assessment. The rule was created to estimate parameters in unstable phases in order
to allow extrapolations to ternary systems. For example, see the hcp description for
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Figure 9.6 Various stable and metastable phase diagrams and the enthalpies of mixing for the
Ag—Al system. (a) The stable phase diagram for the Ag—Al system. (b) The metastable phase
diagram for the Ag—Al system with only liquid and fcc. (c) The metastable phase diagram for the
Ag—Al system with fcc and bec. (d) The metastable phase diagram for the Ag—Al system with fcc
and hep. (e) The enthalpy of the liquid, fcc Al, bec A2 and hep A3 phases at 873 K in the Ag—Al
system. (f) The stable phase diagram for the Ag—Al system with overlayed metastable solubility
curves.
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the Cu—Fe system mentioned in section 8.5.3 and shown in Fig. 8.1(b). Since fcc and
hcp are so similar, it is natural to set their excess parameters equal. For bcc it may
be more adequate to set them equal to the excess parameters for the liquid. Since the
phases in the Ag—Al system are typical Hume-Rothery phases, differences in G,, between
these phases may mainly be due to the contribution of the electron gas to G, (see
section 6.2.8).

The calculated enthalpies for the various phases at 873 K are shown in Fig. 9.6(e).
They are all reasonable except the high positive enthalpy of hcp A3 on the Al-rich side.
This does not matter in the binary system, but, if a ternary element were added, forming
a stable hcp A3 phase at lower Ag contents it would be very difficult to fit any ternary
parameters for hcp. In the ternary Ag—Al-Zn system hcp has a continuous range of
solubility from the Ag—Al binary system to Ag—Zn with a Zn mole fraction between 0.7
and 0.85 (Koster er al. 1964). Thus far no-one has attempted a thermodynamic assessment
of this ternary system. The lack of experimental data on the extension of the other binary
phases into the ternary system is another possible reason for why this has not yet been
done.

The Re-W o phase refit using first-principles data

The o phase has the Strukturbericht designation D8, and a complex structure with five
different crystallographic sites. It is shown in Fig. 5.22.

The coordination number (CN) for sublattices 1 and 4 is 12, i.e., the same as for fcc,
so these sublattices are preferred by elements that have fcc lattices as pure elements.
The second sublattice has CN = 15 and is preferred by bec-type elements such as V, Cr,
and W. The remaining two sublattices have CN = 14 and have more-random occupancy.
Assuming that Re and W can occupy any sublattice, one has the CEF model

(Re, W),(Re, W), (Re, W)g(Re, W)g(Re, W)g 9.1)

This gives 32 end members for the o phase in the Re—W system. Their 0-K Gibbs
energies were calculated ab initio by Berne et al. (2001). They are listed in Table 9.1 and
plotted in Fig. 9.7(a). The figure is reprinted with permission from Fries and Sundman
(2002). In the figure the Gibbs-energy curve calculated from the CEF model using the
tabulated end-member values is also given.

It is worth noting that the primary ab initio data should always be included in a publi-
cation, not only fitted CVM cluster energies. It is the primary calculated or experimental
data that are needed in the Calphad method.

The CEF model using the ab initio data was constructed by Fries and Sundman
(2002) in order to demonstrate that the difference between the CVM and the CEF is
very small for intermetallic compounds that never undergo disordering. In Fig. 9.7(b)
the difference between the site fractions calculated from the CVM and from the CEF
is shown. With a CEF model it is easy to calculate also other quantities, such as the
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Table 9.1 The ab initio calculated energies for the 32 configurations of Re and W, also translated
into J mol™" used as CEF end-member energies (see also Fig. 9.7(a))

Lattice occupation

Energy

1 2 3 4 5 (meV/atom) Xy CEF parameter Jmol™!

Re Re Re Re Re 0 0 oGRC:RC:RC:RC:RC 0
W Re Re Re Re 5.9598 0.0667 °Gw.Re:Re:Re:Re 17349
Re W Re Re Re —41.8254 0.1333 ° GRe-W:Re:Re:Re —121754
W W Re Re Re —34.5563 0.2 ° Gw.w-Re:Re-Re —100593
Re Re W Re Re —58.8566 0.2667 ° GRe-Re:W:Re:Re —171332
w Re w Re Re —50.4266 0.3333 ° Gw.Re:W-Re-Re —146792
Re w W Re Re —85.7745 0.4 ° GRe:W-W-Re:Re —249 690
w w W Re Re —70.2813 0.4667 ° Gw.-w-W-Re-Re —204 589
Re Re Re w Re 16.0299 0.2667 ° GRe-Re:Re:W-Re 46 663
W Re Re W Re 31.0186 0.3333 ° Gw.Re:Re:W-Re 90295
Re w Re w Re —20.5734 0.4 ° GRe:W-Re:W-Re —59889
W W Re W Re —0.9511 0.4667 ° Gw.-W-Re:W-Re —2769
Re Re w w Re 8.7176 0.5333 ° GRe:Re:W-W-Re 25377
W Re w W Re 25.7323 0.6 ° Gw.Re:W-W-Re 74907
Re w W w Re —16.6055 0.6667 ° GRe-W:-W-W-Re —48339
A\ W A\ w Re 5.7752 0.7333 °Gw.w-W-W:Re 16812
Re Re Re Re W —44.2292 0.2666 ° GReRe:Re:Re:W —128751
W Re Re Re W —29.1608 0.3333 °Gw.Re:Re:Re:W —84 887
Re W Re Re W —86.4593 0.4 ° GRe:W-Re:Re:W —251683
W W Re Re w —67.4605 0.4667 ° Gw.-W-Re:Re:W —196378
Re Re W Re W —79.9138 0.5333 ° GRreRe:W-Re:W —232629
A\ Re W Re W —61.4605 0.6 °Gw-Re:W:Re:W —178911
Re W W Re W —107.0972 0.6667 ° GRe-W-W-Re:W —-311760
A\ W W Re W —85.0240 0.7333 °Gw-w-W-Re:W —247505
Re Re Re w W 0.3771 0.5333 ° GReRe:Re:W-W 1098
A\ Re Re A\ W 21.6766 0.6 °Gw-Re:Re:W-W 63101
Re W Re w W —31.6385 0.6667 ° GRe-W-Re:W-W —92100
A\ W Re A\ W —7.8781 0.7333 °Gw.W-Re:-W-W —22933
Re Re w W W 6.7427 0.8 ° GReRe:W-W-W 19628
W Re w A\ W 24.2583 0.8667 ° Gw-Re:W-W-W 70616
Re w w W W —27.5870 0.9333 ° GRe:W-W-W-W —80306
W W W W W 0 1 oGW:W:W:W:W 0

variations of site fractions and configurational heat capacity with temperature, as shown
in Fig. 9.8.

In the paper by Fries and Sundman (2002) the new CEF model for the o phase was com-
bined with an existing assessment of the whole phase diagram from Liu and Chang (2000)
to obtain a complete description of the whole system. In order to obtain fit to the other
phases, it was necessary to adjust the stability of the o phase for the pure elements and a
parameter describing the disordered substitutional regular solution was introduced for o
according to Eq. (5.161). The reason why a regular-solution parameter was needed may
be that, in an assessment without experimental enthalpy data, only differences between
values of G,, of the phases are needed in order to calculate the phase-diagram data. Thus
an enthalpy contribution common to the Gibbs energies of all phases in the system cannot
be found by the assessor.
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9.4 A complete binary system: Ca-Mg

9.4.1

The optimization described here was published by Agarwal er al. (1995).

Experimental data from the literature

A literature review and critical evaluation was given by Nayeb-Hashemi and Clark
(1987). Most of the arguments given there could be used to select the more reli-
able one from among the contradictory sets of experimental results in Table 9.2 (see
section 6.1.2). Since the least square of errors is a good indicator of the best fit only
if the errors are distributed randomly and are small, contradictory experimental values
must be judged before the optimization and values suffering from systematic errors must
be removed (section 2.4.1). The following selections could be done before any calcula-
tion.

The liquidus data of Haughton (1937), Vosskiihler (1937), and Klemm and Dinkelacker
(1947) agree fairly well, whereas those of Baar (1911) and Paris (1934) deviate signifi-
cantly (Fig. 9.9). Since contradictory data cannot both be correct, the latter data, being the
older ones, were rejected in the optimization. The (Mg) solvus data published by these
authors disagree so heavily (see Fig. 9.12 later) that a Gaussian distribution of errors
cannot be assumed. Only the data of Vosskiihler (1937) and Burke (1955) agree well
enough for the scatter to be interpreted as randomly distributed errors. Therefore only
these values were used, not those of Haughton (1937), Nowotny et al. (1940), and Bulian
and Fahrenhorst (1946). For the temperatures of the invariant equilibria the values selected
by Nayeb-Hashemi and Clark (1987) were accepted as the result of a critical judging of
various measurements representing data that must have a unique value. The following
values were used for the optimization: congruent-melting temperature of CaMg,, 986 K;
of Mg-rich eutectic, 789.5 K; and of Ca-rich eutectic, 719 K.

The thermodynamic values agree well, except the enthalpies of mixing of Sommer
et al. (1977) and the enthalpy of formation of CaMg, of Smith and Smythe (1959).
The values of Sommer et al. (1977) disagree significantly with later values from the
same laboratory (Agarwal et al., 1995) and the authors of the later paper assume the
earlier data to suffer from systematic errors. The values of Sommer er al. (1977) were
therefore not used. The values of Agarwal et al. (1995) were treated and plotted (see
Fig. 9.13 later) as partial enthalpies of Ca in liquid (see section 4.1.1.1, on mixing
calorimetry). The enthalpies of formation of CaMg, at 298 K of King and Kleppa (1964)
and Davison and Smith (1968) agree well (—13.4 and —13.1kJmol ™', respectively,
referred to moles of atoms), but the bomb-calorimetry measurement of Smith and Smythe
(1959) (—19.5 £ 13kJ mol ") deviates significantly. The latter was characterized as only
tentative by the authors themselves; thus it was not used. From the heat-content values
of Agarwal et al. (1995) (see Fig. 9.15 later) three points in the vicinity of the melting
temperature were not used, since the possibility of some partial melting there, which
might give some discrepancy between the measured value and its interpretation, cannot
be excluded. All other values given in Table 9.3 were used for the optimization.
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Table 9.2 A summary of experimental phase-diagram data on the Ca—Mg system

Ranges
Reference Experimental method  Equilibria Mg T (K)
Baar (1911) Thermal analysis Liquidus 0.000-1.000  750-1100
Paris (1934) Thermal analysis Liquidus 0.125-0.988  750-1000
Haughton (1937) Thermal analysis Liquidus 0.667-0.970  790-1000
Mg-rich eutectic ~ 0.895 790
Metallography (Mg) solvus 0.987-0.997  570-790
Vosskiihler (1937) Thermal analysis Liquidus 0.578-0.977  800-1000
Mg-rich eutectic ~ 0.894 789
Metallography (Mg) solvus 0.995-0.999  570-790
Nowotny ez al. (1940)  Metallography, (Mg) solvus 0.992-0.995  570-780
Hardness, X-ray
Bulian and Electrical resistivity (Mg) solvus 0.992-0.995  670-790
Fahrenhorst (1946)
Klemm and Thermal analysis Liquidus 0.350-0.839  790-990
Dinkelacker (1947)
Ca-rich eutectic 0.270 718
Burke (1955) Metallography (Mg) solvus 0.994-0.999  640-790
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Figure 9.9 The optimized phase diagram of the Ca-Mg system. Data from @ Haughton (1937),
B Vosskiihler (1937), and 4 Klemm and Dinkelacker (1947) were used. Data from A Baar (1911)
and V Paris (1934) were not used.

Selecting the models

Five phases have to be modeled, the liquid, the fcc and bee phases of pure Ca, the hep
phase of pure Mg, and the intermediate Laves phase CaMg,. For both Ca modifica-
tions and for the intermediate phase the ranges of homogeneity are very small and not
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Table 9.3 A summary of experimental thermodynamic data on the Ca—Mg system
Ranges

Reference Experimental method Quantity Xmg T (K)
Smith and Smythe (1959) Mg vapor pressure W BT ey 0.300-0.667  298-770

Bomb calorimetry ATHCM22(298K)  0.667 298
Chiotti ef al. (1964) Equilibrium with H, +CaH, pucV&*™E ey 0.667-0.800 298-773
King and Kleppa (1964) Sn solution calorimetry ATHCM2 (298K)  0.667 298
Gartner (1965) Reaction calorimetry ATHCM22 (298 K)  0.667 532
Mashorets and Puchkov (1965) Mg vapor pressure i\i,?g - °,ukf,’g 0.158-0.962 1200
Chiotti et al. (1966) Adiabatic calorimetry Afus pCaMey 0.667 987
Davison and Smith (1968) Acid solution calorim. ATHCM2 (298K)  0.667 298
Sommer (1979) Mg vapor pressure ,uk,?g —° K,?g 0.050-0.920 1010

- . li

Agarwal et al. (1995) Mixing calorimetry AH! 0.557-0.964 1023

Drop calorimetry H(T)— H(298K) 0.667 752-1170

known quantitatively, therefore they are ignored and these three phases are modeled as
stoichiometric phases, describing the Gibbs energy G as a function of temperature 7 only.

The enthalpy of mixing versus mole fraction of the liquid phase exhibits roughly
parabolic behavior, indicating that the bonding is predominantly metallic. Therefore the
RK formalism is adequate for modeling the Gibbs energy of the liquid.

The solubility of Ca in the hcp Mg solid solution was measured several times. Since
it is small, (Mg) may be treated as a Henrian solution, which is described by the regular-
solution formula, Eq. (5.65), with a single parameter 0Ll-j =a,+a,T, using the fixed
value for the unary Ca(hcp) parameter proposed by Dinsdale (1991).

Selecting the adjustable parameters

The unary parameters must be identical in all systems containing the same component
and must not be changed in the optimization of a binary system. The Ca(bcc) and Ca(fcc)
phases are thus totally defined and their descriptions do not contain adjustable parameters.
For these unary parameters the SGTE values compiled by Dinsdale (1991) were adopted.

For the Gibbs energy of the CaMg, phase as a function of temperature G (T) —
HR(Ty) — 2Hy M (T,) with T, = 298K three coefficients of Eq. (5.2) can be defined
independently because the H(T) — H(T,) measurements of Agarwal et al. (1995) describe
well enough the heat capacity given by the third coefficient. The enthalpy of formation
(King and Kleppa 1964, Davison and Smith 1968) essentially determines the first coeffi-
cient. The py;, values in the two-phase field Ca + CaMg, are directly related to the Gibbs
energy of CaMg, and thus give a description of G defining independently the second
coefficient. The same is true for wy;, in the two-phase field Mg +CaMg,, since the devi-
ation due to non-zero solubility of Ca in (Mg) is far below significance. The heat-content
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values are not smooth enough to allow differentiation in order to get the heat capacity
C, as a function of T and define a fourth coefficient. Therefore the fourth and fifth
coefficients were estimated using partially the idea of Kubaschewski and Unal (1977).
These authors proposed estimating C, by assuming the fixed value 30.3J mol ' K~!
the melting temperature and using the fixed fifth coefficient £ =21000J K mol " in the
expression

at

C,=—C-2D-T—2E-T 9.2)

Both numerical values are referred to one mole of atoms. The determination of the
two coefficients C and D cannot be done by estimating C, at 298 K, as was done in
the paper of Kubaschewski and Unal (1977), since the method given there requires
a tendency toward ionic structure. Therefore here they were adjusted during the opti-
mization, keeping C, as 30.3]J mol ' K~! at the melting temperature of 986 K. This
procedure seems to be better than usage of the Kopp—Neumann rule assuming Cg"‘Mgﬁ
to be the sum of 1C, ¢, + 3C, y,. C, after this definition would exhibit several kinks
due to the transformation and melting of Ca and Mg, which, however, have no reason
to appear in C, of the CaMg, phase. The term —2FE- T—2 may be regarded as repre-
senting the most significant term of a Taylor-series expansion of the difference between
a Debye function and a constant C, after Dulong and Petit. Thus the method used
by Agarwal et al. (1995) is compatible with the “Ringberg recommendation” (Chase
et al. 1995) that one should express C, as the sum of a Debye function and a linear
function of 7.

For the Mg(hcp) solid solution the only binary parameter is the regular-solution
parameter. It is adjusted using the solubility data of this phase (Vosskiihler 1937,
Burke 1955). Since these solubilities are known over a significant range of tempera-
ture, as explained in section 6.3, it is possible to adjust the regular-solution parame-
ter as function of temperature using two coefficients A and B of the linear function
Letye=A+B-T.

The RK description of the excess Gibbs energy of the liquid phase needs at least
the two parameters OLlclz’Mg and ILIC“;Mg of Eq. (5.65), since the enthalpy of mixing
mixHliq(T) (Agarwal et al. 1995) is clearly asymmetrical. Since the enthalpy (Agarwal
et al. 1995) and Gibbs-energy data (Mashorets and Puchkov 1965, Sommer 1979) of the
liquid are measured independently, it is possible to adjust these parameters as (linear)
functions of temperature, OLlclijg =%4+°B-T and ILIC“;Mg ='A+'B-T. The question
of whether a third parameter is useful can be answered by doing the optimization with
two and then with three parameters and comparing the results. From that Agarwal et al.
(1995) decided to use a third parameter.

Optimization

The selected coefficients were adjusted to the experimental values using the program
BINGSS. The optimization was started with all adjustable coefficients zero, except C
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Table 9.4 Adjusted coefficients of the Ca—Mg system (to express G in Jmol™" of atoms)

Phase Parameter A, or A B, or B C D-10° E
Liquid  °L& . 323224 167211
L e 60.3 6.5490
2Led e 57423 2.7596
Mg(hep) Loty —91832  16.9810
CaMg, GV —67874.7  466.5126  —82.72014  —4.76223 630000

SER SER
_HCa - 2HMg

of the term C-T -In(7) for the CaMg, phase, which was set to 92.1987 to give C, =
90.9Jmol ' K~! at 986K after Eq. (9.2) (1 mole=3 moles of atoms). By imposition
of constraints (section 7.2), the coefficient C was forced to change by —1972 for unity
change of D in this equation, in order to keep C,(986 K) constant.

All values mentioned in Tables 9.2 and 9.3 were put into the file camg.dat, but,
as explained above, the values from Baar (1911), Paris (1934), Haughton (1937),
Nowotny et al. (1940), Bulian and Fahrenhorst (1946), and Sommer er al. (1977)
and the ATH™M2 value of Smith and Smythe (1959) were excluded from the
calculation.

The calculation was started with the variable “IVERS” set equal to 1 (see sections 7.2
and 7.1.1). The Marquardt parameter became 10.0 after ten calculations in the first run.
After this run, the mean-squared error dropped significantly in relation to the definition
of the dimensionless errors in Eq. (2.59). The calculation was continued with “IVERS”
equal to 2, i.e., using common tangents, the Marquardt parameter 10.0 and eight cal-
culations. After four more steps with “IVERS” equal to 2, the Marquardt parameter
became 10~° and, after two more calculations, the mean-squared errors remained con-
stant. The resulting parameters were taken as the optimized dataset. They are given in
Table 9.4.

Results

Diagrams calculated with these parameters are compared with the experimental data in
Figs. 9.9-9.14. There is a small disagreement for the heat of melting, the enthalpy of
formation of CaMg,, and the enthalpy of mixing of the liquid. Because the enthalpy is
a state function (section 2.1.7), the enthalpy of formation plus the heat content plus the
enthalpy of melting must be the same as the heat content of the liquid pure elements
plus the enthalpy of mixing of the liquid with an Mg content of 66.7 mol%. The dis-
agreement, although it is visible in Fig. 9.15, is fairly well within the accuracy of the
measurements.
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Modeling the y—y’ phases: the Al-Ni system

When assessing a system with phases that can undergo disordering, like the B2 and
L1, phases, it is strongly recommended that a model that includes the disordered states
be used, i.e., that the same Gibbs-energy function can be used also for A2 and Al,
respectively. The models recommended for ordered phases are described in section 5.8.4.
The Calphad models usually do not include an explicit dependence on short-range order
(SRO) as in the CVM, for example, because the contribution to the Gibbs energy from
SRO is usually much smaller than many others. As described in the chapter on modeling,
it is possible to describe the topological features of fcc ordering with a Bragg—Williams-
type configurational entropy.

Order—disorder reactions

The stable phase diagram for AI-Ni is shown in Fig. 9.16(a). There is both an ordered
phase (B2) based on the bcc lattice (A2) and an ordered phase (L1,) based on the fcc
lattice (A1). Al and Ni are both fcc as pure elements and the bce phase (A2) is not stable
in this system. This system is of great technological interest because superalloys are based
on the Al + L1, equilibria, so it has been assessed several times using various models.
Superalloys contain from five to eight additional elements and thus it is important to
use a model that can easily be extended to multicomponent systems and also can calculate
equilibria and chemical potentials rapidly enough for it to be used in simulations of phase
transformations using phase-field methods.
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Figure 9.16 Calculated stable (a) and metastable (b) phase diagrams for the Al-Ni system, from
an assessment by Ansara et al. (1997b) and Sundman (unpublished work, 2002).
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By suspending all phases except the fcc, one can calculate a metastable phase diagram
for Al-Ni with only ordered and disordered states of the fcc phase. Such a phase diagram
is shown in Fig. 9.16(b). In order to perform an assessment of these phases, one can use
first-principles calculations of the energies for the various end members in the model,
Le., °Gapnis °Ganis and °Gyy,- The stable parts of the phase diagram must also be
reproduced correctly, of course. It is interesting to note that on the Al-rich side there is a
miscibility gap rather than an ordered L1, phase.

The driving force and thermodynamic factor

In a simulation of phase transformations, one must know the chemical potentials out-
side the stability range of the phase. That is provided by the Gibbs-energy function,
which has been assessed for the whole composition range, not just for the stability
range. In Fig. 9.17(a) the Gibbs-energy functions for the disordered Al, ordered L1,,
and metastable L1, ordered phases are shown. The L1, ordered phase is metastable
because another ordered phase, B2, is more stable, but the Gibbs energy for B2
is not shown.

The diffusion follows gradients in the chemical potentials and the diffusion coefficient
is dependent on the thermodynamic factor (also known as the stability function), which
is obtained from the second derivatives of the Gibbs energy. The values of the ther-
modynamic factor as functions of composition are shown in Fig. 9.17(b), for the stable
L1, phase as well as for the metastable L1, phase at 7 = 1273 K. This figure illustrates
the abrupt changes of these quantities at the ideal ordering composition. In Fig. 9.18 a
simulation using diffusion in a superalloy is shown.
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Figure 9.17 Thermodynamic functions for the fcc phase in the AI-Ni system. (a) The Gibbs
energy of the fcc and ordered fcc based phases. (b) The stability function for the ordered
phases.
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Figure 9.18 A simulated microstructure for an Ni-based five-component model alloy (Warnken
et al. 2002) obtained using an assessed thermodynamic database. The simulation was done using
the MICRESS code for the phase-field model http://www.micress.de. It reproduces the horizontal
section of a directionally solidified alloy, showing y dendrites and interdendritic y" particles.
Courtesy of N. Warken.

Assessment of a ternary oxide system

This case study will describe the first steps of an assessment of the quasiternary system
Al,0,—Ca0O-Si0,. This is a fairly well established system with some particular modeling
problems. It will be used to show some special features of the Thermo-Calc software,
including

e how to handle quasiternary (and quasibinary) systems,

e how to control a ternary miscibility gap, and

e  how to select ternary parameters.

The quasibinary assessments were taken from previous publications: Al,0;—CaO from
Hallstedt (1990), Al,0;-SiO, from Wang and Sundman (unpublished work, 1992), and
CaO-SiO, from Hillert and Sundman (1990). The phase diagrams calculated from these
assessments are shown in Figs. 9.19(a), (b), and (c), respectively.

The quasiternary system

The term “quasi” means that one of the components is redundant, insofar as its amount
cannot vary independently of those of the others. For example, the amount of oxygen is
fixed when the amounts of the other elements have been set. Of course, no real system
has this property, but it is a useful approximation. The Gibbs phase rule states that there
should be one condition for each component plus two for temperature and pressure. In
a “quasi” system the last degree of freedom can be removed by imposing the condition
that the activity of the “redundant” component is set to an arbitrary value. However, one
must be careful to ensure that the modeling of all the phases in the system does not allow
the composition to vary outside the “quasi” limits. If this is not the case, the equilibrium
results are not independent of the selected activity.
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Figure 9.19 The three quasibinary phase diagrams: (a) CaO-Al,0;, (b) Al,0,-SiO, (the dotted
line is a metastable miscibility gap in the liquid), and (c) SiO,—CaO.

The liquid model

The partially ionic two-sublattice liquid model described in section 5.9.4 was used for the
liquid phase. This is a very flexible model, which can take into account many kinds of
ions and other species. In the original model, both CaO and Al,O; were treated as “basic
oxides,” i.e., they give away oxygen and form Ca*" and AP** cations and O*~ anions in
the liquid:

(Ca’, AI’"), (0%, Si0;, Si0,), (9.3)

whereas SiO, is treated as an “acid oxide” because it takes up oxygen, creating the
complex SiOi_. This model has a reciprocal subsystem,

(Ca®*, AI’"), (0>, Si0} ), 9.4)

and it was found to be impossible to control the appearance of a reciprocal miscibility
gap in this subsystem, see section 5.8.1.2, without using too many parameters. No such
reciprocal miscibility gap is found in the real system. One reason for the problem is that
there existed no experimental data to enable the determination of values for the “end
member” Al,(SiO,);.

The model was then simplified by treating Al,O; as “amphoteric,” i.e., it neither
gives up oxygen nor forms any complexes with oxygen, and thus can be modeled as
a neutral species. The size of this species was taken to be half of Al,O;, i.e., AlO;),,
because too large a molecule would change the entropy in the liquid and using the AlO; ),
molecule made the model (Ca*"),(0%", AlO; 12)o identical to the previous ionic model
(Ca>", A1) p(0%7),. The ternary model was thus

(Ca™),(0™, Si0;, AlO; 5, Si0,), 9.5)

Since there are no AI’* ions in the first sublattice, there is no longer any reciprocal
miscibility gap. In both sublattices only a single ionic species is left. Because they have
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the same charge, their amounts must always be equal. Owing to this condition, the model
can be further simplified, without any change in the mathematical formulation, to

(AIO;,, CaO, Ca,Si0,, Si0,) (9.6)

and this is a model for an associate solution as discussed in section 5.9.4.3.

Owing to the problems with this model discussed below, a recent assessment of the
Al,0,—Ca0-Si0, system by Mao et al. (2000) treated the Al,O, oxide as an acid by
introducing the anion AlO)™ into the liquid. This new constituent removes most of the
problems on extrapolating into the quasiternary system, but it is anyway useful to learn
about the problems with the previous model since such problems can occur with any
model or system.

The ternary extrapolation

On putting the three quasibinary assessments together, extrapolating to the ternary system,
and calculating the isothermal phase diagram at 2000 K, one obtains Fig. 9.20(a). In
this diagram there is a small liquid miscibility gap in the SiO, corner arising from the
quasibinary CaO-SiO, system. Additionally there is a large miscibility gap in the liquid
in the central part of the diagram.

This miscibility gap originates from modeling the Ca,SiO, complex in the liquid
with a very large stability. The assessed parameters for interaction between CaO and
Al,O5 and between CaO and SiO, are very negative, whereas that for interaction between
Al,O5 and SiO, is weakly positive at 2000 K. On starting from a liquid with composition
Xca0 = 0.6, xg;0, = 0.4 and adding Al,O;, the liquid splits up into one rich in Ca,SiO, and
another that is rich in Al,O;. Since this miscibility gap does not appear in experimental
investigations, the first objective in the assessment of ternary parameters is to suppress

100 é 0 20 40 60 80 100
Mass percent Al,O, Mass percent Al,O,

@ (b)

Figure 9.20 The ternary extrapolation from the binaries of the liquid at two temperatures (a)
2000K and (b) 1800 K. In (b) all solid phases have been suspended. The upper miscibility gap is
correct, but the lower closed miscibility gap should be suppressed.
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the appearance of this miscibility gap below the stable liquidus temperature. This is not
the only possibility; in some cases it may instead be reasonable to reassess the binary
subsystems in order to avoid the appearance of ternary miscibility gaps, which are due to
the very different interaction parameters in the binaries, as was done in the most-recent
assessment (Mao et al. 2006).

In Fig. 9.20(b) the miscibility gaps at 1800 K, are shown; in this calculation all solid
phases have been suspended. In the top corner the stable miscibility gap in the CaO-SiO,
binary extends toward the binary Al,0,-SiO, edge, where it is metastable with respect
to liquid + solid SiO, equilibria.

Control of the ternary miscibility gap

It is difficult to calculate whether the composition of a phase is inside a miscibility gap in
a ternary system, but it is easy to ascertain whether the composition is inside the spinodal
by calculating the stability function

LT
ox dx
det ! z
Mo s
ox, 0x,

Inside the spinodal this determinant is negative; along the spinodal it is equal to zero.
The smallest eigenvalue of this stability function can be obtained in Thermo-Calc by
use of the function QF (phase name) and its value at various points in the liquid phase
can be calculated. In PARROT one can create equilibria at the relevant compositions
and temperatures and use “EXPERIMENT QF (ION_LIQ)>0.1:.001,” which means that
there will be a contribution to the sum of errors if this inequality is not fulfilled, which
will force the adjustable variables to change during the optimization in order to suppress
the miscibility gap.

Experimental liquidus projection

Figure 9.21 shows an assessed liquidus-surface phase diagram, reprinted with permission
from the ACerS-NIST Phase Equilibria CDROM V.3.1 (http://www.ceramics.org). There
is a stable miscibility gap only close to the SiO, corner. In the central part of the
system there are two ternary compounds with the compositions (Ca0),.Al,0,.Si0,, called
gehlenite, and Ca0.Al,05.(Si0,),, called anorthite. The gehlenite will be called melilite
because it has the same structure as (MgO),.Al,05.Si0, and melilite is the generic name
of this structure. Both melilite and anorthite melt congruently and their melting points
will be used in the experimental file. There are also experimental thermochemical data
for the compounds.

From the liquidus surface, one may use the invariant equilibria with the liquid in equi-
librium with three solid phases as experimental points. This is not strictly correct because
experimentally one has determined only points on the liquidus and this information has
been graphically interpolated and extrapolated to provide isotherms, monovariant lines,
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Figure 9.21 The experimental liquidus surface in the Al,0;—CaO—SiO, system. Reprinted with
permission from ACerS-NIST Phase Equilibria CDROM V.3.1 (http://www.ceramics.org).

and invariant equilibria. In a proper assessment one should go back to measure all these
experimental liquidus points because a graphical extrapolation might not be accurate, but,
for the sake of simplicity, in this case study we will just use the invariant equilibria from
the phase diagram.

There are also some measurements of the activities of the various oxide species. With
this information, one can create an experimental data file for the system.

The interaction parameters

In the above selected model for the liquid there are four constituents, the three “end
members,” AlO;,,, CaO, and SiO,, and the complex Ca,SiO,. There is no corresponding
complex for Al-Si~O because AlO; ), is treated as a neutral species in the liquid.

The interaction parameters involving the end members were assessed when the binaries
were modeled, and this also includes the interaction parameters involving the complex and
the CaO and SiO, end members. However, there is a new “quasibinary” interaction between
Ca,Si0, and AlO;), that can be assessed inside the ternary system since it will give zero
contribution to the three initial quasibinary systems. In fact, the interaction between Ca,SiO,
and AlO;, is the most important one to suppress the miscibility gap in the central part.
Figure 9.22 shows the miscibility gaps at 1800 K, calculated using the parameter

LAlom,CaZSio4 =—15000 9.7)
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@ 0 0.2 0.4 0.6 0.8 1.0
Mass fraction Al,O3

Figure 9.22 The liquid miscibility gap at 1800 K with all solid phases suspended and using the
quasibinary parameter Lc, g0, a0, = —150007J mol~". Compare this with Fig. 9.20(b).

The parameter should be negative in order to stabilize the liquid along the line from
Ca,Si0, to Al,O;. It is possible to model this quasibinary parameter in a composition-
dependent way by using an RK series, in which each parameter L can be temperature-
dependent.

There are three ternary parameters, each of which involves three different constituents:

Lo, /2.€a0.,8i0, (9.8)
Lo, /2.Ca;8i04,8i0, 9.9)
Lo, /2.Ca0,CaySi0, (9.10)

All three of these interaction parameters may be both temperature-dependent and
composition-dependent according to Eq. (5.68).

As pointed out before, one needs some parameters to suppress the miscibility gap and,
by testing, one can find that the quasibinary parameter has the largest effect. Checking
the output from the PARROT module shows that the largest error occurs close to the
Si0, corner where the experimental temperature for the invariant equilibrium of liquid +
Si0, + mullite 4- pseudo-wollastonite is much lower than the calculated value. The very
steep liquidus from the Al,0;-SiO, side that is found experimentally indicates that
either there are more species contributing to the ideal entropy of mixing than considered
in the model, which would be difficult to model, or the excess parameters need to
give larger contributions. The ternary parameter having the largest effect in the SiO,
corner is Lt0,,.Caysi0,.5i0, and it is actually necessary to model this parameter in a
composition-dependent way. Making the quasibinary parameter temperature-dependent
significantly improves the assessment. Finally, the optimization was done using five
ternary coefficients.
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Some notes on a ternary assessment, the Cr-Fe-Ni system

The POP file with experimental data for the Cr—Fe—Ni system is from an assessment
done many years ago by Hillert and Qui (1990). It contains many types of experimental
data: tie-lines between fcc, bee, and liquid; liquidus temperatures; activities and activity
coefficients; heats of mixing; and partition coefficients.

Most of the experimental information is just the same as one would have in a binary
assessment. Since it is a ternary system, one must have one more condition for each
equilibrium. Ternary tie-lines can have two experimental compositions in each phase
and one of these must be used in a SET-CONDITION while the others are used as
EXPERIMENT. As the condition one should select the experimental composition that
has the smallest estimated uncertainty, but the problem is not so critical because there is
the possibility of setting an estimated error also for a condition. One may thus give

SET-CONDITION P=1E5 T=1473 X(fcc,NI)=.05:.01
EXPERIMENT X (fcc,CR)=.22:.01

or

SET-CONDITION P=1E5 T=1473 X(fcc,CR)=.22:.01
EXPERIMENT X (fcc,NI)=.05:.01

and the optimizer will give the same result.

For some activities obtained by measuring the ratio of ion currents of two elements, an
“instrument constant” relating the two ion currents was optimized with a special feature
available in PARROT. The measured quantity, ag./ay; for example, was multiplied by
the instrument constant, VALI1 in the POP file, and VAL1 was allowed to be varied by
PARROT until the best fit was found. This is achieved by the IMPORT VALI1#11 line in
the POP file. The command IMPORT will connect a variable in the POP file, VAL in
this case, with an optimizing variable, V11 in this case. The value after the hash sign “#”
specifies to which V-variable it is connected. V11 can either be set constant or allowed
to be an optimizing variable. The same technique can be used also in other cases, for
example if several samples are kept at the same carbon activity but the activity itself is
not well determined. The activity in several experimental equilibria can thus be set to the
same value but allowed to be varied by PARROT to get the best fit.

Data for the binary systems Fe—Cr, Cr—Ni, and Fe-Ni can be extracted from the SGTE
binary database, for example. All phases, except the o phase, are solution phases and
one may add ternary interaction parameters to all three or just for the liquid. A ternary
parameter can either be just an a + bT function or composition-dependent. The special
form for composition dependence derived by Hillert and used in Thermo-Calc requires
that one use three composition-dependent parameters. The principle is that each of these
three parameters will have the most influence in one of the corners of the ternary system.
A possible set of commands to enter the ternary parameters is

ENTER-PARAM L (LIQUID,CR,FE,NI;0) 298.15 V1+V4*T
ENTER-PARAM L (LIQUID,CR,FE,NI;1) 298.15 V1+V2+V4*T
ENTER-PARAM L (LIQUID,CR,FE,NI;2) 298.15 V1+V3+V4*T
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If one has just the first parameter, ending with “;0,” that would represent the
composition-independent parameter. If all three parameters are equal, that would also
mean that there is no composition dependence. If the assessment gives small values for
V2 and V3, it is advisable to use just a single composition-independent ternary parameter.
This is the reason for using V1 and V4 as optimizing variables for all three parameters.
There will rarely be enough data to evaluate the temperature dependences of three ternary
parameters.

Assessing binary and ternary data together

A common problem is that one may wish to assess binary and ternary data together. This
is possible in PARROT and one may add binary information to the same POP file as for
the ternary or compile several POP files together into PARROT. When more than one
POP file is used, one must answer NO to the third question of the COMPILE command
when the second or later POP file is compiled. For example,

PARROT: compile

INPUT FILE: abc.POP
LIST-FILE /SCREEN/:
INITIATE STORE FILE /Y/:
...output...

PARROT: compile

INPUT FILE: ab.POP
LIST-FILE /SCREEN/:
INITIATE STORE FILE /Y/: N
...output...

If one answers Y (the default) to the prompt INITIATE STORE FILE, any experimental
data from previously compiled POP files will be deleted and the first experimental data
will be placed in the first block in the PARROT/EDIT workspace. If there is a FLUSH
command in the POP file, that will continue storing experimental data in the second block.
The second compile command when the POP file for the ab system has been compiled
and when the prompt INITIATE STORE FILE has been answered N or NO will store
the experimental data on this file in the next block, keeping whatever has been compiled
in the previous blocks. In the EDIT module, one must use the READ command to select
the block with equilibria.

Note that a binary POP file may require some modification before it can be used
in a ternary assessment. The CREATE-NEW-EQUILIBRIUM command has a second
argument that specifies the initialization code. Normally this initialization code is unity (1)
and that means that all components in the system will be entered and all phases suspended
initially. One may then explicitly set the phases FIXED, ENTERED, or DORMANT.
For a binary file compiled with a ternary system, one should change the initialization
code to zero (0) because that means that all components and phases are suspended
initially.
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Thus one should change from the binary file

CREATE-NEW 1 1
CH-ST PH fcc bcc=FIX 1
SET-COND T=1273 p=1E5

to

CREATE-NEW 1 0

CH-ST COMP A B=ENT
CH-ST PH fcc bcc=FIX 1
SET-COND T=1273 p=1E5

or

CREATE-NEW 1 1

CH-ST COMP C=SUS
CH-ST PH fcc bcc=FIX 1
SET-COND T=1273 p=1E5

However, the latter is less safe. It is always possible to have problems with equilibria
with one or more components suspended. Even when one enters only a few, the suspended
components may appear with non-zero fractions. There is a fix to this, which may have to
be executed explicitly for each troublesome equilibrium. By simply setting the component
first entered and then suspended, the Gibbs Energy System (GES) will explicitly set the
fractions to zero for the suspended components.

There may also be trouble with phases that dissolve the suspended component on a
sublattice together with one of the other components. For example, if one has a phase with
the model (A)(B, C) and suspends component C, then the phase appears as stoichiometric
in the AB system and for stoichiometric phases the calculation of G is different when one
calls GES to calculate it. Deeper inside GES there will be an error when GES discovers
the suspended component. This bug may be fixed in a later version, but at present one
may have to enter the same phase twice, both as (A)(B) and as (A)(B,C), with the same
coefficients for the parameter °G, 5.






Appendix — websites

Bilbao crystallographic server, http://www.cryst.ehu.es

Crystal Lattice Structures website, http://cst-www.nrl.navy.mil/lattice
International Union of Crystallography, http://www.iucr.org

MICRESS phase field software, http://www.micress.de

SGTE website, http://www.sgte.org

Sluiter enthalpy database, http://www-lab.imr.edu/~marcel/enthalpy/enthlp.html
Thermo-Calc Software AB, http://www.thermocalc.com

Widom alloy database, http://alloy.phys.cmu.edu/
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coefficient, 102
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alternate definition of error, 204
alternate mode, 196
antiferromagnetic, 94
anti-site atoms, 128
aqueous solution, 154
assessment
analysis of result, 241
first diagram, 271
how experts do, 200
logbook, 161
methodology, 161
publication, 200
rounding off coefficients, 242
verification, 198
without thermodynamic data, 110
associate, 116
associate model, 116
Avogadro’s number, 10
azeotropic extrema, 33

B2 ordering model, 131
Bain transformation, 53
binary excess models, 104
binary phase-diagram measurement, 68
binary system, 8
BINGSS, 206
experimental-data file, 210
graphical output, 218
log file, 207
model-selection file, 207
result file, 207
running, 217
Bohr magneton number, 92
Boltzmann’s constant, 14
Boltzmann’s relation, 14

bond energy, 96

Bragg—Williams-Gorsky (BWG) model, 137

Bravais lattice, 18
Brillouin zones, 191
bulk modulus, 15

calculation of equilibrium, 23
calorimetric data, 58
Calphad, 1
method, 4, 57
technique, 4
carbide models, 127
cell model, 149
charged end member, 188
chemical ordering, 22
chemical potential w, 10
chemical-potential measurement, 63
chemical reactions and models, 155
closed system, 8
cluster, 116
cluster energy, 96, 120
cluster expansion, 53
cluster fraction, 118

cluster-variation method (CVM), 53, 118

coefficient

activity, 102

adjustable, 158, 192

end-member parameter, 82

Redlich—Kister (RK), 108, 195

reducing number of, 158
coefficient, parameter, or variable, 80
coherent-potential approximation

(CPA), 57

Colinet extrapolation model, 113
common tangent, 34, 205
compatibility of liquid models, 153
compatibility of models, 244
component oxides, 149
component selection, 87
composition, 87

range, 135

sets, 127, 190

variables, 87
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compound-energy formalism (CEF), 95
compound-energy parameter, 95
compressibility, 15
computational thermodynamics (CT), 1
configurational-entropy model, 80
congruent transformation, 107
conjugate variables, 11
consistent thermodynamics, 2
constituent, 9
array, 95
fraction, 23, 89
constitutional
square, 124
triangle, 122
constraints, 25
contradictory experiments, 196
coordination number, 181
covalent bonding, 174
crystal structure, 20
Bravais lattice, 18
Herrmann—-Mauguin notation, 19
nomenclature, 21
Pearson symbol, 21
prototype, 21
space groups, 18
Strukturbericht, 21
symmetry elements, 18
unit cell, 18
use in modeling, 182
Wyckoff notation, 18
crystal symmetry, 18
CT, computational thermodynamics, 1
Curie temperature, 92
curve fitting, 159
cure-fitting formulae, 167
CVM tetrahedron approximation, 118

Darken quadratic model, 103
database
cancellation of errors, 252
documentation, 252
management, 252
merging assessments, 250
missing parameters, 250
mobility, 253
referencing, 253
unassessed parameters, 250
updating, 252
validation, 251
database format
SGTE, 253
TDB, 253
Debye function, 184
defect energies, 128
definition of symbols, 9
degenerate, 117, 119

degree of freedom, 13
internal, 89
density-functional theory (DFT), 48
density of states, 191
dilatometric measurement, 70
dilute solutions, 102
disordered state, 132
disordered state of an ordered phase,
137
driving force, 24, 33
drop and scanning calorimetry, 63
Dulong—Petit function, 184

eigenvalue, 290
Einstein function, 184
electrical-conductivity measurement, 70
electron gas, 191
electron volt, eV, 47
emf measurement, 63
end member, 80, 85
ab initio calculation, 136
charged, 188
fictitious, 96
ternary, 96
enthalpy, 12
enthalpy of mixing, 60
entropy, 8
configurational, 80
excess configurational, 104
equation of state, 7
equilibrium
calculation, 23
conditions, 10, 24
constant, 155
heterogeneous, 156
homogeneous, 156
equivalent fractions, 150
error, sum of squares of, 42
estimation methods, 172
eutectic phase diagram, 107
excess
Gibbs energy, 81
binary enthalpy, 109
binary entropy, 109
heat capacity, 86, 109, 184
models, 103
parameters, 95
excess enthalpy data, 170
excess H and S relationship, 172, 195
experimental data
analysis, 165
conflicting, 241
contradictory, 196
inequality, 225
phase diagram, 168
thermodynamic, 169
weighting, 197
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Fermi—Dirac statistics, 191
ferromagnetic model, 91
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constituents, 114

end members, 96
first principles, 2, 47

phase diagram, 53

pure-element data, 53
formalism, 79, 159
formula unit, 90
fraction

bond, 139

cluster, 118

constituent, 10, 89

defects, 130

equivalent, 150

mass, 87

mole, 10, 87

phase, 24

site, 89

vacancy, 90

volume, 90

zero-phase lines, 37
fractions

negative, 89
freezing-point depression, 174
fugacity, 100

gas constant, 9
Gauss method, 42
Gedankenexperiment, 9
generalized gradient approximation
(GGA), 50
Gibbs—Duhem equation, 12
Gibbs energy, 12
extrapolation, 95
of mixing, 104
partial, 13, 96
reference state, 97
Gibbs-energy minimization, 23
Gibbs-energy model
configurational entropy ("'S,,), 80
end member, 81
excess energy (5G,,), 81
excess models, 103-114
extrapolation, 86
physical contribution (°™*G ), 80
surface of reference (*TG,,), 80
Gibbs—Konovalov rule, 41
Gibbs phase rule, 13
grand potential, 12

heat, 8

heat capacity, 15, 184
extrapolation, 197
Kopp—Neumann rule, 172

Helmholtz energy, 12

Henry’s law, 102

Herrmann—Mauguin notation, 19

Hume-Rothery phases, 190

ideal composition, 166
ideal mixing, 97
ideal model
gas, 98
reciprocal, 123
substitutional, 97
implicit functions, 40
inconsistent thermodynamics, 2,
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inequality experiment, 225
inertia, 4
interfaces and surfaces, 255
intermediate phase, 166, 181
intermetallic phases, 181
internal energy, 8
internal variables, 23, 89
interstitial solutions, 126, 176
invariant, 13, 37, 38
ionic-liquid model, 151
isopleth, 37
isoplethal section, 38
IVERS = 3, 196

Knudsen-cell measurement, 67
Kohler extrapolation model, 113
Kopp—Neumann rule, 172
Kroger and Vink notation, 156

Lagrange multiplier, 25
Laplace transformation, 11
lattice, 18

Bravais, 18

sub-, 21

vibrations, 91
lattice parameter, 20
lattice stability, 3, 52, 86, 175
Laves phase, 264
law of mass action, 88
least-squares method, 42
lever rule, 24
liquid miscibility gaps, 173
liquid models, 146-155, 173
liquid two-sublattice model, 150
liquidus

curve, 173

slope, 175
literature search, 161
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local-density approximation (LDA), 50
long-range order (LRO), 100, 115, 122
magnetic, 92

magnetic model, 91
Marquardt’s algorithm, 44
mass percent, 87
Massieu’s function, 12
merging assessments, 250
metallic liquids, 173
metallography, 71
metastable extrapolations, 178, 274
microprobe measurement, 72
Miedema estimate, 172
miscibility gap, 16, 79, 100
liquid, 173
reciprocal, 125
summary, 190
symmetrical, 108
mixing entropy
ideal, 97
non-random, 116
random, 97
mixtures, 94
mobility database, 253
model
additional constituents, 114—122
associate, 116
binary excess, 104
carbides and nitrides, 186
cell, 149
cluster-variation method (CVM), 118
compatible, 133, 183, 244
compatible liquid, 153
compound energy, 95
dilute, 102
ferromagnetism, 91
general form, 80
higher-order excess, 112
ideal gas, 98
ideal substitutional, 97
intermetallic phases, 135
interstitial, 126
ionic liquid, 151
Laves phase, 264
limitations, 159
liquid, 173
liquid two-sublattice, 150
liquids with short-range order, 147, 174
metal-non-metal, 127, 136
metallic liquids, 146
non-ideal, 100
non-random configurational entropy, 116
pressure dependence, 83
quasi-chemical, 117
quick guide, 193
reciprocal, 123

regular solution, 101
rigid band, 191
o phase, 135, 276
simplifications, 157
slags, 149
sublattices, 122-146
temperature dependence, 81
ternary excess, 111
ternary extrapolation, 112
two-sublattices, 126
Wagner—Schottky, 127
model for order—disorder transition, 136, 186
Al/L1,, 133, 285
Al/L1,/L1,, 140
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adding interstitials, 143
models with three or more sublattices, 134
modified quasi-chemical model, 147
mole percent, 87
molecular dynamics, 53
monovariant, 13, 35, 38
Monte Carlo, 53
Maossbauer spectroscopy, 76
Muggianu extrapolation model, 113
multicomponent phase diagram, 256
Murnaghan model, 83

nano-materials, 254

negative fractions, 89

Newton—Raphson method, 28

nitride models, 127

non-ideal behavior of ideal solutions, 180
non-ideal gas model, 99

non-ideal phases, 100

non-random configurational entropy, 116, 174
nucleation, 255

open system, 8
ordering phenomena, 177
oxide models, 127

pair probability, 119
parameter
adjustable, 158
binary, 104
constraining, 194
end member, 96
end-member Gibbs energy, 98
excess, 95
lattice, 20
magnetic model, 93
missing, 250
model, 79
optimization, 42
reasonable values, 198
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unassessed, 250

parameter, coefficient, or variable, 80

PARROT, 219
alternate mode, 229, 237
experimental-data file, 221
graphical data file, 226
hints, 236
inequality experiments, 225
interactive use, 228
methodology, 220
model-setup file, 226
optimization method, 219
optimize again and again, 233
tricks and treats, 239
unwanted miscibility gaps, 235
work files, 228

partial enthalpy, 171

partial Gibbs energy, 13

partitioning physical properties, 146

partitioning the Gibbs energy, 138, 145

Pearson symbol, 21
Pelton extrapolation method, 113
percent
mole, mass, or weight, 87
peritectic phase diagram, 107
phase, 9
fraction, 24
rule, Gibbs, 13
phase diagram
V-T,83
In(x) — 1000/T, 36
n—T, 36,206
p—T, 36,83
x—T, 36, 105
congruent transformation, 107
eutectic, 107
fcc ordering with excess, 142
fce prototype ordering, 141
first principles, 53
isopleth, 256, 261
isothermal, 36
multicomponent, 256
peritectic, 107
reciprocal, 124
phase-diagram calculation, 38
phase-diagram types, 34
phase-field method, 260
phase names, 246
phase selection, 166
phase stability, 171
phase transformation, 2
Planck’s function, 12

polycrystalline, 254
polymer model, 154
pressure model, 83
property diagram
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T—-G,85
T—-G/H/ST, 82
x—a, 115
x—G, 99, 106
x—G/H/S, 142
x—H, 36
x—T¢, 94
x—y, 121
x—u, 16, 111

pseudo-binary system, 179
publication of assessment, 200

quantum mechanics, 47
quasibinary system, 179
quasi-chemical model, 117
and long-range order, 139
for liquids, 147
quasiternary system, 287
quick guide for model selection, 192

random mixing, 97
reaction calorimetry, 61
reassessed, 161
reciprocal
constitutional square, 124
curve-fitting parameter, 126
energy, 123
excess model, 124
miscibility gap, 125
model, 123
parameter, 95, 124
reaction, 123, 189
space, 191
system, 123
Redlich—Kister (RK) series, 107
reference state
chemical potential, 88
Gibbs energy, 81, 97
regular-substitutional model, 101
REL.STAND.DEV (RSD), 231
reversible, 9
Rietveld refinement, 76, 136
rigid-band model, 191
RK (Redlich—Kister) series, 107
Raoult’s law, 102

scatter of experimental data, 161

Scheil-Gulliver solidification model, 261

second-order transformation, 177
selected best value, 165
semiconductor materials, 189
SER, 59, 81
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raw-experimental-data format, 242
short-range order (SRO), 93, 100, 115, 159,
285
and long-range order, 139
clusters, 121
implicit, 101, 141
insignificant, 136
liquids, 121, 147
magnetic, 92
quasi-chemical, 117, 147
reciprocal system, 126
simplifications, 167
simulation of phase transformation, 257
single crystal, 254
site fraction, 23, 89
smoothing procedure, 165
solubility product, 155
solubility range, 168
solute drag, 259
solution, 94
solution calorimetry, 61
space groups, 18
spinel model, 187
spinodal, 16
stability function, 16, 290
stable-element reference, SER, 81
start of assessment, 195
starting values of coefficients, 203
state functions, 8, 12
state variables, 8
statistical thermodynamics, 14
stoichiometric
compound, 80, 169
deviation from, 128
factor, 81, 88
ideal, 133
phase, 122
ratios, 128
structure family, 177, 247
Strukturbericht, 21, 247
sublattice, 21, 80
sublattice model, 122
subregular model, 108
subscripts, 10
substitutional solutions, 101, 175
subsubregular model, 108
superscripts, 10
surface of reference (srf), 80
surfaces and interfaces, 255
symbols, definition of, 9
systematic behavior, 173
systematic errors, 161, 165
systems
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Ag-Al, 274

Al-Cr, 178
Al-Fe—-Ni, 54
Al-Mg—Zn, 36
Al-Ni, 285
Ba—Cu, 69
C-Co-Cr-Fe-Mo-V-W, 256
Ca-Mg, 279
Cr-Fe, 16, 34, 94
Cr-Fe-Ni, 293
Cr-Ni, 94

Cu, 82

Cu-Mg, 36, 264
Cu-Ni, 109

Fe, 36, 84, 85
Fe-Mo, 178
Mg-Sn, 115, 121
Re-W, 276

Tammann triangle, 69
TDB database format, 253
terminal phases, 166, 175
ternary excess models, 111
ternary extrapolation models, 112
ternary phase-diagram data, 72
ternary solubility, 169
ternary system, 8

isoplethal section, 32

isothermal section, 13
thermal-analysis measurement, 69
thermal expansion, 15
thermal vacancy, 90
thermodynamic data, 169
thermodynamic factor, 16
thermodynamic relations, 15
thermodynamics, 7-16

first law, 8

inconsistent, 2, 102

second law, 8

third law, 9
three-phase measurement, 75
tie-line, 35

binary, 70

direction of, 74

ternary, 72
Toop extrapolation model, 113
transmission electron microscope (TEM), 72
two-sublattice models, 126

unary, 8
unary data, 5, 86, 175, 244
unassessed parameter, 250

“V”-shaped excess enthalpy, 174
vacancy

constitutional, 90

fraction, 90

hypothetical, 151
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validation of databases, 251
van’t Hoff law, 175
vapor-pressure measurement, 65
variable, coefficient, or parameter, 80
variable stoichiometry, 152
verification of assessment, 198
vertical section, 37

Wagner dilute model, 102
Wagner—Schottky defect model, 127, 172, 185
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work, 8
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Wyckoff notation, 18

X-ray measurement, 76
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